|
астрономия. Небесная механика. Презентация по астрономии, ученицы 11 а класса Шпак Алины Понятие Небесная механика
Небесная механика Презентация по астрономии, ученицы 11 А класса Шпак Алины Понятие «Небесная механика» - Небесная механика — это раздел астрономии, который изучает движение небесных тел, космических аппаратов, искусственных и естественных спутников планет под действием сил гравитации. Задачей небесной механики является предсказание положений небесных тел, исследование устойчивости Солнечной системы и звёздных систем, определение значений астрономических постоянных, построение теории движения тел Солнечной системы с учётом эффектов общей теории относительности. В ряде случаев учитывается давление света (в движении комет и астероидов), силы сопротивления среды (в движении ИСЗ), изменение массы и другие факторы. Для особо точных расчётов длительных космических полётов и движения астероидов учитываются поправки за счёт современной теории пространства-времени-тяготения — общей теории относительности.
История небесной механики Возникновение - Огромное значение для развития астрономии имели открытия гениального английского учёного И. Ньютона. Используя сформулированные им законы движения (законы Ньютона), он показал, что законы Кеплера следуют из законов движения, если силы, действующие между телами, изменяются обратно пропорционально квадратам расстояний между ними, т. е. открыл закон всемирного тяготения.
- Пользуясь законами, открытыми Ньютоном и разработанными им же новыми математическими методами, учёные смогли создать теорию движения планет. Это привело к тому, что в астрономии выделились два раздела: астрометрия и небесная механика (подобно тому, как в физике в своё время выделились механика, оптика, электродинамика и др.), которые бурно развивались в XVII—XIX вв.
Законы кеплера Первый закон Кеплера (эллипсов) Эллипс — вытянутая окружность, обладающая тем свойством, что существуют две точки (фокусы эллипса F1 и F2, для которых выполняется условие: сумма расстояний фокусов от любой точки эллипса постоянна (F1C + F2C = F1E + F2E = const), т. е. не зависит от точки, выбранной на эллипсе).
Планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Формулировка Кеплера: Второй закон Кеплера (площадей) - Радиус-вектор планеты за равные промежутки времени описывает равные площади.
Это утверждение аналогично тому, что скорость движения уменьшается по мере удаления от Солнца, а точнее, это закон сохранения момента импульса. - Закон сохранения момента импульса:
Момент импульса (K = mvr) — физическая величина, удобная для описания движения точки по окружности или эллипсу, параболе, гиперболе, а также для описания вращения твёрдого тела. Закон сохранения момента импульса (как и законы сохранения импульса и энергии) — один из трёх основополагающих законов природы. Согласно теореме Нётер этот закон является следствием изотропности (равноправия всех направлений) Вселенной. Третий закон Кеплера (гармонический) - Отношение куба большой полуоси планетной орбиты к кубу периода обращения планеты вокруг Солнца равно сумме масс Солнца и планеты (в формулировке Ньютона):
a3 / T2 = (G / 4π2) • (M + m), где M и m — массы тел системы; a и T — большая полуось и период обращения меньшего тела (планеты, спутника); G — гравитационная постоянная. Развитие - Первый значительный успех небесной механики был связан с кометами. Кометы — «хвостатые звезды», названные так за необычный вид. Они внезапно появляются на небе, быстро проносятся среди звёзд и исчезают. В 1705 г. Э. Галлей предположил, что три кометы, наблюдавшиеся в 1531, 1607 и 1682 гг., являются одним и тем же небесным телом, двигающимся по эллиптической орбите с периодом около 76 лет, и предсказал новое появление кометы в 1858 г. Орбиту кометы уточнил А. Клеро, и она появилась в назначенное время. Эта комета получила название кометы Галлея. Последний раз она появилась в 1986 г.
- К 40-м гг. XIX в. стало ясно, что движение открытого Гершелем Урана нельзя объяснить притяжением Солнца и известных к тому времени планет. Была выдвинута гипотеза о существовании ещё одной планеты Солнечной системы.
- Эта планета Нептун была открыта 23 сентября 1946 г. немецким астрономом И. Галле по вычислениям У. Леверье. Открытие Нептуна окончательно доказало правильность ньютоновской теории тяготения.
- Величайшим триумфом небесной механики ознаменовались полёты космических советских станций «Вега-1» и «Вега-2» к комете Галлея в 1975—1976 гг. и американских «Вояджер-1» и «Вояджер-2» к Юпитеру, Сатурну, Урану и Нептуну в 1977—1989 гг. Эти полёты продолжаются и в настоящее время.
Задачи небесной механики Основная задача небесной механики заключается в расчёте движения небесных тел под действием сил всемирного тяготения. В эту задачу включают исследование и расчёт движения планет, искусственных спутников Земли (ИСЗ), космических аппаратов, звёзд в двойных и кратных системах, строения галактик. Среди них наиболее популярной и классической является задача n тел.
В число задач небесной механики включают и учёт приливных сил, возникающих вследствие неоднородности поля тяготения.
Все эти задачи в математическом смысле исключительно трудны. Большинство из них решается численными методами с использованием самых мощных компьютеров. Но есть и задачи, которые могут быть решены в аналитическом виде. |
|
|