современные типы судов. Примеры конструкций судов
Скачать 11.6 Mb.
|
7.4. Экранопланы Экранопланы являются быстроходными низко-высотными воздушными судами, которые используют эффект увеличения подъёмной силы крыла вблизи поверхности воды (земли). Преимущества экранопланов состоят в высоком аэродинамическом качестве (35 50, тогда как у современных самолетов оно не превышает 15 20), большой скорости хода (более чем 100 узлов) и хорошей мореходности при большом водоизмещении. Преимущества этих судов особенно проявляются при их использовании в качестве десантных кораблей и в перевозках по тундре и надо льдом ( рис. 7.27 – 7.28). К недостаткам экранопланов относят сравнительно большую взлетную скорость и невысокую мореходность, связанную с большой взлетной скоростью и низким расположением крыла. Кроме того, из-за малой высоты полета возникает опасность столкновения с препятствиями, находящимися на пути. Эффект крыла над водой используется и у трёхкорпусных судов, корпуса которых соединены крыльями (рис. 7.29). Разновидностью экранопланов также являются транспортные амфибийные платформы, имеющие два узких корпуса, которые слегка погружены в воду или глиссируют по ней. Набегающий поток воздуха и струи газов от передних воздушно-реактивных движителей создают полудинамическую воздушную подушку под платформой (рис. 7.30). Рис. 7.29. Экраноплан-тримаран с глиссирующими корпусами Рис. 7.30. Транспортная амфибийная платформа /26/ Экранопланы, использующие выдвижные крылья для образования дополнительной подъемной силы, западные специалисты выделяют в группу, обозначаемую WSEV (Winged Surface Effect Vehicles). По мнению разработчиков, экранопланы этого типа можно применять в качестве носителей десантно-высадочных средств, вертолетов и самолетов вертикального взлета (рис. 7.31). Рис. 7.31. Экраноплан типа WSEV 8. МНОГОКОРПУСНЫЕ СУДА Суда, имеющие несколько соединённых между собой корпусов, известны с древнейших времён, однако до 60-х годов XX века они не имели широкого распространения и считались неэффективными, так как опыт постройки относительно крупных катамаранов был в основном неудачным. Действительно, по сравнению с обычными судами, катамараны более тяжёлые, имеют меньшую вместимость трюмов и повышенное сопротивление трения о воду, проблемы с компоновкой МО или необходимость дублирования энергетических установок, а также проблемы с прочностью соединительных конструкций и обеспечением благоприятных параметров качки. Однако позднее выяснилось, что специализированные многокорпусные суда могут быть намного эффективнее однокорпусных, благодаря своим достоинствам: малому волновому сопротивлению, хорошей остойчивости, большой площади палубы. Строительство таких судов в настоящее время стало массовым. По архитектурно-конструктивным признакам различают следующие основные типы многокорпусных судов:
По назначению многокорпусные суда бывают: пассажирские, паромы, промысловые, контейнеровозы, СКГТ, научно-исследовательские, буксиры-толкачи, плавучие краны, буровые, вспомогательные, различные корабли ВМФ и др. Наиболее быстро развиваются высокоскоростные многокорпусные суда с малой площадью ватерлинии (СМПВ). Малая площадь ватерлинии позволяет не только дополнительно снизить волновое сопротивление судна, но и повысить его мореходность на волнении. Рис. 8.1. Спуск катамарана парома Б ольшая площадь палубы катамаранов и тримаранов позволяет компенсировать потери грузовместимости внутри корпусов и использовать их в качестве накатных или площадочных судов, упрощая грузообработку. У пассажирских судов большинство кают размещается в надстройках с естественным освещением. Рис. 8.2. Патрульный катер – глиссирующий катамаран Повышенная остойчивость катамаранов эффективно используется у плавучих кранов, судов для перевозки тяжеловесных грузов, сейнеров и небольших траулеров. Рис. 8.3. «Пронизывающий волны» скоростной катамаран (носовая часть имеет форму, позволяющую существенно снизить удары встречных волн) Скоростные качества в наибольшей степени реализуются у СМПВ. Дополнительное снижение сопротивления трения движению судна часто обеспечивают подводные крылья (рис. 8.4, 8.5), а иногда – воздушные каверны (рис. 8.6). Подводные корпуса СМПВ могут иметь небольшие крылья для стабилизации движения на циркуляции и успокоения качки. Малые водоизмещающие катамараны имеют обычно поперечную систему набора корпуса. Однако с ростом длины, эксплуатационных скоростей, а также при применении для конструкций лёгких сплавов существенно возрастают нагрузки от общего продольного изгиба. В этом случае применяется продольная система набора. Помимо этого, нижний поясок эквивалентного бруса у многокорпусных судов имеет небольшую ширину, поэтому выбор в пользу продольной системы набора напрашивается в первую очередь для конструкций днища корпусов. Рис. 8.4. Скоростной катамаран с автоматически управляемыми ПК в носу и интерцепторами7 в корме Рис. 8.5. Скоростной пассажирский катамаран с убирающимися подводными крыльями Рис. 8.6. Скоростной пассажирский катамаран с корпусами на воздушных кавернах Р ис. 8.7. Тримаран Рис. 8.8. Дуплус (а) и трисек (б)– типы двухкорпусных СМПВ Рис. 8.9. Типы пассажирских круизных СМПВ: катамаран (а) и трикор (б) /14/ Рис. 8.10. Трёхкорпусное СМПВ с аутригерами Большое значение для поперечной прочности таких судов имеет конструкция соединяющих корпуса мостов или верхнего строения. В связи с небольшой высотой моста между корпусами, он часто является наиболее напряжённой конструкцией, работающей на поперечный изгиб. Кроме того, соединительные конструкции могут испытывать чрезмерные удары волн. Таким образом, верхний корпус работает в условиях одновременного действия значительных волновых нагрузок, вызывающих продольный и поперечный изгиб, и ударных нагрузок от слеминга. Выбор системы набора соединительных конструкций зависит также от их протяжённости по длине и ширине. На рис. 8.11 – 8.13 представлены примеры конструкций многокорпусных судов. Рис. 8.11. Продольная система набора корпуса катамарана (относительно ДП симметрично) Рис. 8.12. Схема мидель-шпангоута тримарана /22/ Рис. 8.13. Мидель-шпангоут речного пассажирского катамарана /16/ 9. ПРИМЕРЫ КОНСТРУКЦИЙ УЗЛОВ КОРПУСА Существует множество требований к конструкциям корпуса различных судов, которые изложены в правилах классификационных обществ. Эти требования отражают опыт эксплуатации судов, и их выполнение обязательно. Количество этих требований велико, формулировка многих из них со временем изменяется, особенно это относится к практически неисчерпаемому множеству узлов корпуса судов различных конструктивных типов. Вместе с тем, есть и некоторые относительно общие принципы и правила, а также типовые узлы, на основе которых можно создать технически грамотные конструкции. Конечно, в любом правиле могут быть исключения, но это уже отдельная тема. Рассмотрим здесь некоторые общие требования и типовые примеры узлов. Следует особо отметить, что количественные показатели, которые далее будут встречаться, следует рассматривать как оценочные – точные требования следует искать в правилах классификационных обществ. Требования к листовым конструкциям:
Рис. 9.1. Подкрепление стенки рамных балок Требования к стенкам рамных балок и листовому набору двойных перекрытий:
Рис. 9.4. Подкрепления стенки рамной связи Требования к кницам и бракетам:
4) Кницы (бракеты) могут соединять балки внахлёст (внакрой) (рис. 9.7). Однако для соединения рамных балок накройные кницы не допускаются. Также накройные кницы нельзя применять в районах повышенных местных нагрузок и вибрации. Накройные кницы более технологичны, чем приставные (особенно в палубных конструкциях, когда их применение позволяет избежать ручной сварки в потолочном положении). Однако надёжность узлов с такими кницами невысока (дополнительные напряжения, повышенная коррозия в щелях между кницей и стенками балок, вибрационные трещины). Требования к профилю балок основного набора и рёбер жёст-кости: 1) Уголковый профиль не допускается для конструкций стальных морских судов (в основном из-за малой жёсткости и наличия значительных дополнительных напряжений в балках от стеснённого кручения). 2) При наличии перекрёстных рамных связей симметричные профили нетехнологичны – они применяются обычно для конструкций крупнотоннажных судов или при специфичных требованиях к надёжности. 3) Концы рёбер жёсткости, не примыкающих к другим балкам набора, должны срезаться «на ус» (рис. 9.8). Требования к узлам пересечения балок набора:
а) пластины обшивки имеют опоры не с четырёх, а только с двух сторон, поэтому для дополнительного подкрепления обшивки в местах больших нагрузок требуется вваривать дополнительные бракеты проставыши; б) рамные балки должны иметь второй поясок, которым они крепятся к холостым балкам, при этом её присоединённый поясок всё равно оказывается существенно меньше, чем в обычной конструкции, что приводит к уменьшению момента сопротивления профиля; в) узлы крепления перекрёстных балок не всегда достаточно надёжны из-за малой протяжённости сварных швов, для усиления этих узлов приходится применять дополнительные кницы (рис. 9.9). Рис. 9.9. Навесная конструкция набора с проставышами 3) Полка балки основного набора, проходящей через вырез в стенке рамной связи, должна быть свободной (не приваренной). Иначе в этом районе концентрируются напряжения, что приводит к быстрому появлению трещин (рис. 9.10). 4) Лист в районе прохода сквозь него балки следует подкреплять ребром жёсткости, иначе могут появиться трещины в месте приварки балок. 5) В местах действия сосредоточенных, ударных или вибрационных нагрузок, в районах опор рамной балки, а также при недостаточной высоте рамной балки (меньшей двух с половиной высот балок основного набора) узел пересечения балок должен подкрепляться планками заделками (рис. 9.11, 9.12). Требования к шпигатам (голубницам): Высота шпигатов (голубниц) должна быть не более 20 % от высоты стенки, а ширина неподкреплённого участка обшивки (под шпигатом) – не более 15 толщин обшивки. Некоторые общие принципы: 1) Любая конструкция, прежде всего, должна в полной мере отвечать требованиям эксплуатации. Это условие наиболее комплексное, так как эксплуатация судна должна быть одновременно экономически эффективной и безопасной (как для людей на судне, так и для окружающей среды). Рис. 9.12. Подкрепление вырезов планками 2) Качество конструкции тем выше, чем она технологичнее. Учёт технологии постройки и ремонтов конструкций позволяет снизить сроки и себестоимость постройки и ремонтов судна. Так, например, в труднодоступных местах обычно наблюдается большинство случаев брака, начальных дефектов конструкций, которые приводят к быстрому износу и повреждениям этих узлов. Особенно опасно то, что повреждения в таких узлах часто трудно обнаружить, разрушения переходят на соседние элементы, а это грозит нарушением не только местной прочности, но и крушениями судов при тяжёлых условиях эксплуатации (например, во время шторма). 3) Нельзя допускать в узлах конструкций «жёстких точек». Даже если напряжённость конструкций в целом невысока, в жёстких точках напряжения могут возрастать в несколько раз, и очень часто превышают предел текучести материала. Вообще, качество конструкции тем выше, чем меньше в ней перепады напряжений. 4) В месте действия сосредоточенной нагрузки должно находиться пересечение балок набора. 5) В месте действия нагрузки, распределённой по линии, должна находиться рамная балка или подкрепляющая листовая конструкция. |