Главная страница

Коспект. Конспект лекций ИП и ПРЭ. Принцип первый. Электромеханическое преобразование энергии не может осуществляться с кпд, равным или большим 100 %


Скачать 0.71 Mb.
НазваниеПринцип первый. Электромеханическое преобразование энергии не может осуществляться с кпд, равным или большим 100 %
АнкорКоспект
Дата22.11.2022
Размер0.71 Mb.
Формат файлаdocx
Имя файлаКонспект лекций ИП и ПРЭ.docx
ТипДокументы
#804981
страница4 из 11
1   2   3   4   5   6   7   8   9   10   11

3. Организационное обеспечение сапр.


Стандарты по САПР требуют выделения в качестве самостоятельного компонента организационного обеспечения, которое включает в себя положения, инструкции, приказы, штатные расписания, квалифицированные требования и другие документы, регламентирующие организационную структуру подразделений проектной организации и взаимодействие подразделений с комплексом средств автоматизированного проектирования. Функционирование САПР возможно только при наличии и взаимодействии перечисленных ниже средств: а) математического обеспечения; б) программного обеспечения; в) информационного обеспечения; г) технического обеспечения; д) лингвистического обеспечения; е) методического обеспечения; ж) комплектование подразделений САПР профессиональными кадрами.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа - это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делится на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т.е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования) . предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения - языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Комплектование подразделений САПР профессиональными кадрами. Этот пункт предписывает комплектование подразделений САПР профессионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства) 

 Математическое моделирование на эвм физических процессов в электрической части электростанций различного типа


В настоящее время на электростанциях (ЭС) и в энергетических системах получают применение быстродействующие микропроцессорные устройства релейной защиты (РЗ), реагирующие на мгновенные значения величин. Для оценки поведения таких защит и выбора уставок их срабатывания требуются расчеты мгновенных значений токов и напряжений в электрических сетях, особенно это важно для мощных системных узлов, какими являются блочные электростанции с агрегатами единичной мощностью 200-800 МВт.

Существующие методики расчета токов коротких замыканий (КЗ) для выбора уставок РЗ, как правило основаны на использовании кривых затухания токов [I]. Приближенный учет параметров генераторов и других элементов системы, изменений их скоростей, особенностей систем возбуждения и некоторых других факторов при таком подходе не только вносит погрешности в расчеты токов КЗ, но, в ряде случаев, не позволяет оценить поведение защит (например, работу резервной максимальной токовой защиты генератора с системой самовозбуждения при близких КЗ).

Для решения вышеуказанных проблем разработана и реализована на ПЭВМ математическая модель типовой блочной электростанции показанной на рис 1



Рисунок 1 - Схема моделируемой электростанции1

На станции имеется два уровня напряжения 110 и 330 кВ, соединенные автотрансформаторной связью. К системе шин 110 кВ присоединены два энергоблока турбогенератор-трансформатор мощностью 300 МВт каждый. К системе шин 330 кВ подключены два энергоблока по 300 МВт и три энергоблока по 800 МВт. Нз каждом блоке учтена двигательная нагрузка собственных нужд, включающая синхронные и асинхронные двигатели. От каждой системы шин отходят линии связи с электрической системой, а также тупиковая линия с активно-индуктивной нагрузкой. Генераторы 300 МВт снабжены системами самовозбуждения, генераторы 800 МВт - системами независимого возбуждения. Имеется возможность изменять загрузку генераторов, их кратность форсировки, состав двигателей собственных нужд, мощность электрической системы.

Математические модели генераторов, трансформаторов, двигателей, линий электропередачи описаны полными дифференциальными уравнениями Парка-Горева. Уравнения асинхронных двигателей записаны в неподвижных осях d и q. Уравнения трансформаторов и линий записаны в трехфазной системе координат а,Ь,с, учтена группа соединения блочных трансформаторов Y-Δ с заземленной нейтралью. Уравнения генераторов и синхронных двигателей записаны в собственных осях d,q, зависящих от углового положения ротора. На каждом шаге производится пересчет переменных к осям а,Ь,с. Для учета вытеснения тока массивы роторов генераторов и двигателей представлены двумя эквивалентными демпферными контурами по каждой изосей d и q, а также обмоткой возбуждения по оси d для синхронных машин. Более подробное описание математических моделей элементов приведено в [2,3].

Для определения напряжений в узлах схемы используется метод Гаусса. Для определения токов в ветвях потокосцеплений вращающихся машин на каждом шаге расчета с помощью метода Рунге-Кутта система дифференциальных уравнений, записанных на основании первого закона Кирхгофа для производных токов. Режим короткого замыкания моделируется подключением шунта в месте КЗ.

Предлагаемая программа позволяет получать мгновенные значения токов, напряжений, мощностей в каждой фазе, а также обобщенные вектора этих параметров по трем фазам, углов, описывающих поведение системы; действующие значения токов и напряжений по трем фазам; токи и напряжения прямой, обратной и нулевой последовательностей.

Моделировались 1,2,3-фазные и 2-фазные на землю короткие замыкания на выводах генераторов, на системах шин 110 и 330 кВ, на секциях собственных нужд 6 кВ, на отходящих от шин линиях электропередачи.

Далее приведены некоторые осциллограммы, полученные при моделировании ЭС, аналогичной Углегорской. Полученные результаты сравнивались с имеющимися на Углегорской ТЭС расчетноэкспериментальными данными.

На рис. 2-4 показаны осциллограммы мгновенных значений токов в месте замыкания в каждой из фаз при возникновении в момент времени 0.02 с 3-фазного КЗ на шинах 110 кВ. Максимального значения 108.6 кА достигает ток в фазе С. Апериодическая составляющая в фазных токах к моменту отключения выключателей (0.2 с) еще имеет существенную величину.



Рисунок 2 - 3-фазное КЗ на шинах 110 кВ, ток в месте КЗ,фаза А



Рисунок 3 - 3-фазное КЗ на шинах 110 кВ. ток в месте КЗ.фаза В

Ток можно представить в виде вектора, вращающегося с синхронной скоростью в координатах a,b,c, проекции которого на оси в каждый момент времени являются мгновенными значениями тока в фазах a,b,c. Такой вектор называется обобщенным или результирующим. На рис. 3 показано, как изменяется его модуль при рассматриваемом КЗ. Амплитудное значение равно 108.6 кА. Начальное значение периодически составляющей 66.5 кА, а по расчетам, предоставленным Углегорской ТЭС, эта величина равна 67.83 kA. Соответствующие действующиезначения токов при 3-фазном КЗ на шинах 330 кВ составляют 50.5 и 51.54 кА.

Разработанная модель позволяет рассмотреть поведение всех элементов электростанции при различий коротких замыканиях, получить токи и напряжения во всех ветвях схемы, определить мощности. Имея характер переходного процесса, можно рассчитать уставки релейной защиты, проанализировать работу установленных защит. Результаты, полученные при моделировании, согласуются с данными Углегорской ТЭС, что подтверждает адекватность модели.
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта