Проектирование реверсивного тиристорного преобразователя и пч
Скачать 1.13 Mb.
|
Выбор защитных аппаратовЗащита автоматическими выключателямиАвтоматические выключатели являются защитными аппаратами многократного действия и предназначены для защиты вентильных преобразователей от внешних коротких замыканий, опрокидывания инвертора и перегрузок по току. Выключатели устанавливаются на стороне переменного и выпрямленного токов. Место включения автоматических выключателей в схемах вентильных преобразователей определяется теми наиболее вероятными аварийными режимами, от которых предусматривается защита. При этом должны учитываться специфика работы преобразователя, требования защиты вентилей и селективности отключения поврежденной цепи. Автоматические выключатели переменного тока устанавливаются в преобразователях, питающихся от сети 380 В, на первичной стороне трансформатора или до токоограничивающих реакторов в бестрансформаторном варианте. Выключатели на стороне переменного напряжения защищают преобразователь как от внутренних, так и от внешних аварийных режимов в выпрямительном режиме. В инверторном режиме при прорыве инвертора аварийный ток замыкается через вентили одной фазы, минуя цепь переменного тока (однофазное опрокидывание инвертора), и в этом случае не разрывается автоматическим выключателем. В связи с этим, такие схемы могут применяться для преобразователей, где режим инвертирования не применяется, и для возбудителей, поскольку обмотку возбуждения двигателей нежелательно отключать от источника питания («разнос»). На стороне постоянного тока устанавливается автоматический выключатель А3725Б УЗ на выпрямленное напряжение 220 В, обеспечивающий протекание номинального тока 250А, тепловой расцепитель на 160 А, электромагнитный расцепитель 250 А; уставка по току срабатывания: теплового расцепителя 185 А, электромагнитного расцепителя не менее 2,75Iн= 2,75×128 = 352 А (выбирается 1500 А). Собственное время отключения А3700 с дистанционным расцепителем полупроводникового типа не более 10 мс. На стороне переменного тока устанавливается автоматический выключатель А3716Б на номинальное напряжение 380 В, обеспечивающий протекание номинального тока выключателя 160 А, электромагнитного расцепителя 160 А, теплового расцепителя 63 А; уставка по току срабатывания: теплового расцепителя 72 А, электромагнитного расцепителя 630 А. Защита от перенапряженийПроцессы, протекающие в вентильных преобразователях, часто сопровождаются перенапряжениями, которые, воздействуя на вентили, могут привести к их пробою, вызывающему, как правило короткое замыкание. Основными видами перенапряжений являются: 1. Сетевые перенапряжения, обусловленные действием сетевой коммутационной аппаратуры или атмосферных явлений. 2. Схемные перенапряжения неповторяющегося характера, связанные с действием коммутационной аппаратуры вентильного преобразователя. Это перенапряжения, связанные с включением питающего трансформатора, подключением вентильного преобразователя к источнику переменного напряжения, отключением питающего трансформатора, а также отключением тока нагрузки при помощи автоматического выключателя. 3. Схемные повторяющиеся перенапряжения - они обусловлены работой вентилей в силовой схеме и являются либо резонансными, либо коммутационными. Резонансные перенапряжения связаны с потреблением из сети несинусоидального тока и прерывистым режимом работы преобразователя. Коммутационные схемные перенапряжения вызываются периодическим переходом вентилей из закрытого состояния в открытое и обратно. Они характеризуются (при отсутствии ограничительных устройств) крутым фронтом (до 1000 В/мкс) и значительной амплитудой (до 10-кратного значения по отношению к рабочему напряжению). Для ограничения перенапряжений широко применяются накопители энергии - конденсаторы, входящие в состав RC-цепочек. В целях защиты от коммутационных перенапряжений, поступающих из питающей сети, при коммутациях трансформатора и цепей нагрузки, RC-цепочки включают на вторичной стороне трансформатора по схеме, приведенной на рисунке 2.11. Рисунок 2.11 - Схемы включения RC-цепочек При заряде конденсатора, в результате перенапряжений в контуре RC происходит колебательный процесс перехода электромагнитной энергии в электростатическую и обратно. Для настройки колебательного контура на апериодический процесс, последовательно с конденсатором устанавливается резистор R3, сопротивление которого должно быть больше двукратного волнового сопротивления этого контура. Разрядное сопротивление R2 выбирается из условий разряда С1 на 10% за один полупериод частоты питающей сети. (2.30) где С1 – ёмкость конденсатора, Ф. Для защиты от коммутационных перенапряжений применяются RC-цепочки (снаберы), включенные параллельно тиристорам (рисунок 2.12). Рисунок 2.12 - Схема включения RC-цепочки Контроль напряжения питающей сети, выпрямленного напряжения и тока Наличие и уровень напряжения питающей сети контролируются с помощью трехфазного реле. При исчезновении фазы или при снижении на 48% напряжения одной из фаз реле подает команду на отключение автоматических выключателей. Световое табло сигнализирует о включенном и выключенном состоянии масляного выключателя. Для визуального контроля величины выпрямленного тока и напряжения предусмотрены амперметр, подключенный к шунту, и вольтметр, в цепи которого имеются предохранители. На стороне переменного тока преобразователя установлены трансформаторы тока, сигналы которых через разделительный трансформатор поступают в систему импульсно-фазового управления и систему защиты от токов короткого замыкания. При помощи указанных трансформаторов, измеряющих ток преобразователя, а также блока датчиков состояния тиристоров (БДС), контролирующих закрытое состояние тиристоров, формируется логический сигнал на переключение выпрямительных групп реверсивного преобразователя. |