ГДИС. Лекции Интерпретация ГДИС. Р. Г. Шагиев интерпретация результатов гидродинамических
Скачать 5.09 Mb.
|
1.5 Влияние изменения состояния призабойной зоны пласта на распределение давления. Скин-фактор Давление в любой точке пласта (в т.ч. и на забое скважины) после пуска единичной скважины с постоянным дебитом зависит от множества факторов и параметров, таких как, например, состояние призабойной зоны, радиуса скважины и ее гидродинамического несовершенства, геометрии границ пласта и т.д.: В этой обобщенной форме записи (1.56) через S обозначен скин-фактор: Скин-фактор, или скин-эффект, введенный Ван Эвердингеном и Херстом (1953), определяет разность давлений при установившемся режиме фильтрации вокруг скважины, призабойная зона которой имеет проницаемость, отличную от проницаемости удаленной зоны пласта. На рис. 1.1 и 1.18 схематически представлена скважина в двухзональном пласте. В однородном пласте с проницаемостью k находится скважина радиуса r c , а в призабойной зоне пласта (ПЗП) наблюдается круговая зона радиуса r s , в которой проницаемость равна k s . Дебит скважины при установившейся плоскорадиальной фильтрации в этом случае выражается формулой: Влияние неоднородности пласта на КВД-КПД при неустановившейся плоскорадиальной фильтрации к скважине, находящейся в центре круговой зоны радиуса Ts (с параметрами kg и aes) в бесконечном пласте (см. рис. 1.18), изучалось в 1951 г. В.Н. Щелкачевым, в 1958 г. Г.И. Баренблаттом и В.А. Максимовым и другими исследователями (сравнивалось одновременное влияние неоднородности и притока). Учет этого вида неоднородности, по существу скин-фактора, осуществляется введением понятия, обобщенного приведенного (эквивалентного) радиуса скважины г с пр . Приведенный радиус скважины с обозначеними, принятыми в настоящем изложении, определяется соотношением: где Гс - радиус гидродинамически совершенной скважины, Сдоп - коэффициент, учитывающий дополнительные фильтрационные сопротивления (гидродинамическое несовершенство скважин, которое можно оценивать по графикам В.И. Щурова, например, нарушения линейного закона фильтрации и др.). Исследования показали возможность определения параметров удаленной зоны пласта по преобразованным графикам КПД-КВД для больших значений времени t. Оценивая r с пр , можно судить о состоянии ПЗП. Определение величины скин-фактора S (его знака и численного значения) позволяет решать важные практические задачи: • оценивать состояние ПЗП скважины в любой момент ее жизни; • ранжировать фонд скважин и выделять те из них, которые имеют ухудшенное состояние ПЗП; • служить основой для планирования геолого-технических мероприятий, направленных на улучшение состояния ПЗП, увеличение дебитов скважин (установление очередности проведения операций ГТМ, выбор скважины и технологии проведения ГТМ); • S, определенные до и после проведения ГТМ, позволяют судить об эффективности ГТМ. Основная расчетная формула (1.28), используемая в ГДИС с учетом влияния скин-фактора (1.57)-(1.61), представляется в виде откуда величина скин-фактора определяется с учетом (1.30): Для удобства и упрощения, принимая, например, для случая КПД t=l ч, находят Pc(t)=P1q , являющееся продолжением прямолинейного участка графика КПД в полулогарифмических координатах до оси ординат (см. рис. 1.10). Тогда скин-фактор подсчитывается по формуле: Таким образом, на точность определения скин-фактора влияют правильность графического нахождения прямолинейного участка графика КПД и его уклона в полулогарифмических координатах и постоянные параметры в формуле (1.64'). Однако на КПД-КВД влияют и другие факторы (влияние ствола скважины - послеэксплуатационный приток, различные режимы течения и др. эффекты), которые вносят неопределенность и затрудняют уверенное выделение прямолинейного участка графика в полулогарифмических координатах. Это вызывает, в ряде случаев, неуверенность в оценках скин-фактора и его использовании. Дальнейшие исследования позволили устранить эту неуверенность. 1.6. Влияние объема ствола скважины на перераспределение забойного давления Наиболее распространенная техника и технологии снятия КПД-КВД предполагают замеры, регистрацию изменений забойных давлений (и дебитов) после пуска-закрытия скважины на устье с помощью предварительно спущенных на забой глубинных приборов и комплексов (см. рис. 1.1). Используемые при ГДИС основные расчетные формулы - (1.25), (1.28), (1.62) - получены в предположении о мгновенном открытии-закрытии скважины (о мгновенном пуске или прекращении притока через поверхность фильтрации на забое скважины). Так как обеспечить мгновенный пуск скважины с постоянным дебитом при снятии КПД достаточно сложно, то наиболее распространенным способом ГДИС на неустановившихся режимах является снятие КВД после остановки скважины, при этом обеспечивается условие: q=0=const. Однако это условие мгновенного закрытия скважины при снятии КВД тоже сразу, мгновенно, не обеспечивается, так как между устьем скважины (устьевой задвижкой) и забоем имеется ствол скважины с объемом V. В работающей скважине перед ее закрытием ствол скважины заполнен полностью или частично газожидкостной смесью. После закрытия скважины на устье происходит изменение (рост) забойного давления во времени и пластовой флюид продолжает поступать в ствол скважины за счет сжатия газожидкостной смеси в стволе скважины Дебит на забое qi(t) - пунктирная линия на рис. 1.1 - изменяется медленнее, чем на устье, где после закрытия задвижки q=0. Этот затухающий во времени после закрытия скважины на устье дебит qi(t) часто называют после-эксплуатационным притоком, притоком-оттоком жидкости за счет сжатия флюидов в стволе скважины и других эффектов. Послеэксплуатационный приток qi(t) искажает 1-начальные участки кривых изменения забойного давления (см. рис. 1.1 и 1.10) и обусловлен проявлением влияния объема ствола скважины (ВСС). Изменение термобарических условий в стволе скважины после закрытия на устье может вызывать сегрегацию фаз, фазовые превращения и др. процессы, которые влияют на монотонный характер затухания притока qi(t). В частности, при определенных условиях (при высоких газосодержаниях - газовом факторе и невысокой проницаемости ПЗП) возможен в некоторые промежутки времени отток жидкости qz(t) из ствола скважины в пласт (см. рис. 1.1). Этот отток жидкости в пласт может снижать проницаемость ПЗП, и как следствие происходит уменьшение продуктивности скважины после каждой остановки скважины. Переменный послеэксплуатационный приток q(t) на забое скважины после остановки измеряется с помощью глубинных дебитомеров или приближенно рассчитывается по соотношениям: где z - коэффициент сверхсжимаемости газа. Соотношения (1.65) - (1.67) предполагают мгновенную сепарацию газа в подъемных трубах и изотермический процесс в стволе скважины. Влияние ствола скважины за счет послеэксплуатационного притока q(t) после закрытия скважины на устье искажает первый, самый начальный участок КВД, который несет ценную информацию о состоянии ПЗП. Наличие достоверной кривой притока q(t), лучше зарегистрированной с помощью глубинных дебитомеров-расходомеров, позволяет использовать q(t) для обработки ранних по времени начальных участков КВД многочисленными предложенными методами (их более 20), т.н. методами обработки КВД с учетом притока. Отечественными и зарубежными исследователями разработаны дифференциальные методы с учетом притока (название связано с определением q(t) по формулам (1.65)-(1.б7) путем численного или графического дифференцирования экспериментальных кривых Pc(t), Рз(1), Рб(0), а также интегральные методы. Это методы Г.В. Щербакова (1956 г.), A.M. Пирвердяна (1956 г.), И.А. Чарного и И.Д. Умрихина (1957 г.), Г.И. Баренблатта и соавторов (1957 г.), Э.Б. Чекалюка (1958 г.), Ю.П. Борисова (1959 г.), Ли Юн-шана (1960 г.), М. Гемала (1960 г.), Б.А. Богачева (1962 г.), А.Ф. Блинова (1962 г.). Van Everdingen (1953 г.). Hurst (1953 г.), Gladfelter и соавторов (1955 г.), Amaud (1960 г.), Ramey (1965 г.) и др. Большинство предложенных методов обработки КВД - с учетом притока жидкости в ствол скважины после ее остановки на устье - гидродинамически (теоретически) обоснованы и сутьих сводится к «корректировке»-<<ис правлению» искаженного послеэксплуатационным притоком q(t) первого начального участка КВД с помощью известного (замеренного) q(t) так, чтобы в определенных координатах получить прямолинейный график, по уклону которого и отрезку, отсекаемому на оси ординат, определить параметры пласта. Либо используются специальные палетки. Применение методов обработки КВД с учетом притока может сокращать время проведения исследований скважин, однако объем получаемой информации о пласте (особенно для неоднородных пластовых фильтрационных систем) будет меньше, чем при более длительных и продолжительных исследованиях. Большинство предложенных методов обработки КВД с учетом притока основаны на использовании решения М. Маскета задачи о притоке упругой жидкости к кольцевому или точечному стоку, работающему с переменным дебитом в однородном бесконечном пласте при упругом режиме. Для случая точечного стока это решение имеет вид (частный случай интеграла Дюамеля): Более общие случаи рассмотрены Л.Г. Кульпиным и Ю.А. Мясниковым. Формула (1.69) была преобразована и предложена И.А. Чарным и И.Д. Умрихиным [6] для задач исследования скважин на неустановившихся режимах с учетом притока: Эта формула является исходной для большинства дифференциальных методов. Аналогично И.А. Чарным и И.Д. Умрихиным была предложена формула, являющаяся исходной для большинства интегральных методов обработки КВД с учетом притока: где импульс давления - отобранный объем жидкости — здесь v(t) - суммарный объем жидкости, притекающий скважину после ее остановки. - Основная расчетная формула дифференциального метода И.А. Чарного и И.Д. Умрихина на основе соотношения (1.70) представляется в виде: графиков выполняется с меньшей точностью, чем вычисление интегралов эмпирических графиков. Поэтому интегральные методы предпочтительнее. В методе А.И. Чарного и И.Д. Умрихина предполагается подсчет 5(t) проводить численным интегрированием, заменяя кривую q(t) на графике ломаной линией. В методе Ю.П. Борисова при вычислении интеграла предполагается допущение о возможности аппроксимации фактической кривой q(t) квадратичной параболой или трапецией. В методе Хуан Коуженя вычисления предусматривают возможность аппроксимации фактической кривой параболой n-го порядка. В приближенном методе приведенного давления Г.В. Щербакова пренебрегается величина 5(t) в выражении (1.76). В методе М.Гемала интеграл вычисляется графически при допущении возможности аппроксимации фактической кривой q(t) ломаной. В методе Ли Юншана при вычислении интеграла предусматривается осреднение кривой притока. Различные виды аппроксимаций эмпирических функций при вычислении их производных интегралов требуют определенного объема вычислительной работы. Большинство предложенных методов обработки КВД с учетом притока основываются на допущениях, что кривая q(t) имеет плавный монотонно убывающий (затухающий) «характер» (кривая qi(t) на рис. 1.1), зависящий от параметров пласта и пластовых флюидов. Однако на практике могут наблюдаться и немонотонные кривые (q2(t) на рис. 1.1), которые характеризуются наличием на кривой притока q(t) периодов времени, когда жидкость оттекаетиз ствола скважины в пласт после остановки на устье. Так, анализ промысловых КВД по 23 скважинам различных месторождений Башкирии (Туймазинского, Ар-ланского, Константиновского и Шкаповского) показал, что в 4 скважинах на кривых q(t) отмечался однократный отток в интервалах времени от 5 до 15 мин и от 30 до 40 мин. В 8 скважинах Шкаповского месторождения (65% рассмотренных скважин) кривые q(t) характеризовались сложной формой, указывающей на многократную смену притоков и оттоков различной интенсивности в различных интервалах времени. В 4 скважинах на КВД были замечены характерные «горбы». Резко аномальный характер соответствующих кривых q(t) и AP c (t) оказался в 13 из 15 скважин пласта Д IV Шкаповского месторождения (с высоким давлением насыщения - Р нас =15 МПа, малой вязкостью нефти -m=10 -3 Па-с, большим газовым фактором - до 120м 3 /т, легкой нефтью - до 750кг/м 3 , средней проницаемостью пласта - от 0,1 до 0,6 мкм 2 ). Сложный характер КВД и кривых притока-оттока q2(t) может объясняться сегрегацией фаз (газ- жидкость) в стволе скважины после остановки, фазовыми превращениями при изменении термобарических условий в стволе скважины, а также возможностью влияния неоднородности пласта, сил инерции, нарушением линейного закона фильтрации и другими явлениями. Анализ и сопоставление различных методов обработки КВД с учетом притока-оттока q(t), по данным массовой обработки исследований скважин и различного типа гипотетических (теоретических) КВД показал, что обеспечиваются достаточно точно обработка КВД и определения параметров пласта: • для скважин с монотонно-затухающим притоком - дифференциальными методами И.А. Чарного и И.Д. Умрихина, Ю.П. Борисова, А.М. Пирвердяна и интегральными - Э.Б. Чекалюка, Г.И. Баренблатта и соавторов. Ли Юншана; • для скважин с однократным оттоком жидкости из ствола скважины в пласт в непродолжительные периоды исследования - интегральными методами Г.И. Баренблатта и соавторов, Э.Б. Чекалюка. Если отток имеет место в течение длительных периодов и кривая q2(t) имеет неоднократные притоки-оттоки, то методы с учетом притока могут применяться как вспомогательные. Рекомендуется обеспечить длительные исследования скважин, которые позволят применить метод без учета притока для обработки КВД. Одним из путей получения достоверных КВД являются исследование скважин путем перекрытия скважины на забое и регистрация КВД с помощью манометров, помещенных под забойными отсекателями, т.е. исключая приток-отток жидкости в ствол скважины после ее закрытия на устье. За рубежом также известны методы обработки начальных участков КВД-КПД с учетом замеренных послеэксплуатационного притока q(t) и Pc(t), связанных с их сверткой и разверткой (convolution - decon-volution), определением параметров пласта с использованием функций влияния. Вместе с тем были выполнены исследования по одновременному влиянию ствола скважины и скин-фактора в условиях плоскорадиального притока, в частности, на форму и особенности начальных участков КПД-КВД. Решения прямых задач для этих случаев, как отмечает В.Н. Щелкачев, были выполнены О.А. Жаутыковым (1956-1957 г.) и французским исследователем Р. Alba (1958 г.). Полученные ими точные решения оказались очень сложными и громоздкими для анализа и практических выводов. Г.А. Баренблатт и В.А. Максимов (1958 г.) также исследовали влияние послеэксплуатационного притока q(t) и неоднородности пласта в ПЗП при неустановившемся притоке жидкости к скважине. Ими были получены операционным методом аналитические решения - основные расчетные формулы для различных случаев неоднородности пласта и притока q(t): скважина с кольцевой призабойной зоной (скин-эффектом), скважины с вертикальными, горизонтальными трещинами и щелями, скважины у прямолинейной непроницаемой границы (сброса), скважины в зонально-неоднородном пласте, многослойном пласте с непроницаемыми прослойками, многослойном пласте с притоками, с пропластками ограниченной проницаемости. где Jn(u) и Yn(u) - функции Бесселя соответственно первого и второго рода n-го порядка. Аналитическое исследование уравнения (1.100') и ему подобных достаточно сложно для получения практических полезных выводов о влиянии ствола скважины на КПД-КВД. Поэтому для удобства анализа применяется прием, связанный с построением и использованием универсальных теоретических графиков в безразмерных координатах (или в форме универсальных палеток в безразмерных координатах) на основе полученных аналитических решений, например, типа (1.100). Эти универсальные теоретические кривые (type curves, в специальной зарубежной литературе) - палетки, рассчитанные для различных теоретических МПФС и построенные в безразмерных (нормированных) координатах, широко известны и применяются за рубежом, некоторые из них входят в стандарт нефтяной индустрии США. Так, например, задаваясь в (1.100') значениями безразмерных CD , to и S (S учитывался введением его через приведенный радиус скважины r w e -S в безразмерные пара- метры C D e 2S и t D e 2S ), была рассчитана и построена серия универсальных кривых. Схематичное представление о влиянии ствола скважины на безразмерное давление приведено на рис. 1.19 в билогарифмических координатах для случая S=0. Аналогичные графики были построены и для различных CD и S (положительных и отрицательных). Влияние ствола скважины во всех случаях заключалось и проявлялось в том, что начальные участки универсальных графиков в безразмерных билогарифмических координатах представлялись взаимно параллельными прямолинейными графиками с уклоном, равным единице, т.е. под углом 45: i=l,0; (1.101') и в этот период безразмерное давление PD связано с безразмерным временем to приближенным соотношением (считается с достаточной точностью до 5% для практических расчетов при анализе данных ГДИС): Кроме того, для радиального течения, которое приближенно начинает проявляться на универсальном графике КПД-КВД в билогарифмических координатах через 1,5 цикла после окончания влияния ствола скважины, эта зависимость P D = P D ( T D ) выражается соотношением: На (рис. 1.20) представлен график КПД-КВД в билогарифмичесих координатах. На этом графике выделяется четыре участка (I-IV), по которым можно диагностировать и идентифицировать различные типы фильтрационных потоков. Поэтому билогарифмический график называется диагностическим графиком. I участок - самый ранний по времени - начальный прямолинейный, с уклоном, равным единице, т.е. под углом 45 , и начинается из начала координат. Этот участок характеризует период влияния ствола скважины. Диагностическим признаком (ДП) этого типа течения - влияния ствола скважины (послеэксплуатационного притока-оттока) является прямолинейный участок, начинающийся из начала координат и расположенный под углом 45°, т.е. с уклоном, равным единице. Время t I (время окончания I прямолинейного участка) характеризует окончание влияния ствола скважины и начало участка П. II участок - криволинейный, в ранние моменты времени переходит к III участку. На конфигурацию II участка могут влиять различные эффекты как в стволе скважины, так и в пласте. Продолжительность II участка по времени (между точками t I и t II начала и окончания II участка) оценивается «эмпирическим правилом» в 1,5 цикла, полученным из анализа универсального графика. III участок - средний криволинейный, который характеризует плоскорадиальный фильтрационный поток (РФП), т.к. для этого участка справедливо соотношение (1.101'), а, следовательно, и методика обработки КПД-КВД в полулогарифмических координатах без учета притока. Оценив по билогарифмическому графику время t n - начало РФП, можно определить параметры пласта по специализированному традиционному полулогарифмическому графику КПД-КВД, т.к. снимается основная трудность и неопределенность проведения прямолинейного графика (см. рис. 1.10). Его надо проводить, начиная с найденного по диагностическому графику времени 1 II IV участок - конечный, который характеризует условия на внешней границе пласта. 1.7 Анализ данных исследований скважин с помощью универсальных графиков и палеток Определение параметров пласта с помощью прямолинейной анаморфозы КВД-КПД плоскорадиального потока в бесконечном однородном пласте при упругом режиме фильтрации (простейший метод без учета притока, метод Хорнера и др.) является одним из наиболее распространенных, обычных и традиционных (conventional) способов обработки КПД-КВД и рекомендуется в большинстве монографий, инструкций и руководств. Область применения этих и других методов (не связанных с прямолинейной анаморфозой КПД-КВД), в общем случае, определяется условиями математического моделирования МПФС и решения соответствующих прямых и обратных задач подземной гидромеханики (исходными физическими представлениями, математической постановкой задач, предположениями и допущениями при решении задач и получении точных или приближенных аналитических решений и их теоретическом анализе, оценкой точности приближенных решений и т.п.). Так, применение методов прямолинейной анаморфозы КВД-КПД в случаях сложных МПФС (с различного вида неоднородностями пластов, скин-фактором, влиянием ствола скважины и др.) вызывает определенные трудности и особенности, например, когда процессы изменения давления в пласте описываются сложными основными расчетными формулами и графиками (результатами теоретического решения прямых задач ПГ), исключающими саму возможность прямолинейной анаморфозы кривых изменения давления в возмущающих и реагирующих скважинах. В таких случаях используется метод сравнения, сопоставления (curve matching - в зарубежной практике) определенным образом преобразованных замеренных КВД-КПД с универсальными (безразмерными, нормализованными) соответствующими теоретическими кривыми, построенными на базе точных решений различных прямых задач ПГ Эти безразмерные универсальные кривые, представляются в виде палеток теоретических кривых (type curves). Сама процедура сопоставления (matching) фактических кривых с универсальными палетками заключается в следующем. Универсальная кривая, построенная в билогарифмических координатах, наносится на прозрачную пленку (кальку) и накладывается на фактическую кривую - график прослеживания давления (также построенную в билогарифмических координатах, желательно с одинаковым масштабом бумаги в билогарифмических координатах) до возможно полного их совмещения, при обязательном соблюдении взаимной параллельности осей абсцисс и ординат фактического и универсального графиков. Это совпадение указывает на вероятность соответствия фактических данных модели (МПФС), для которой рассчитана данная (совпавшая) универсальная теоретическая кривая, вероятно, из-за неоднозначности решения обратных задач подземной гидродинамики. Универсальные и эталонные кривые (в отличие от безразмерных универсальных кривых палетки эталонных кривых строятся по формулам упругого режима при различных численных значениях параметров пласта, в частности, для пластов с единичными параметрами) используются для обработки КПД-КВД и изменения давления в возмущающих и реагирующих скважинах для различных МПФС. Эти методы достаточно просты и не требуют много времени при наличии банка (каталога) набора палеток. Зарубежные разработчики палеток высылают их по заказам потребителей. Разработкам и применению универсальных и эталонных кривых посвящены многочисленные данные отечественных и зарубежных исследователей. Это работы В.Н. Щелкачева (1945 г.), Н.С. Ерофеева и соавторов (1953 г.), С.Г. Каменецкого (1959 г.), Ю.П. Борисова и В.П. Яковлева (1960 г.), С.Н. Бузинова и И.Д. Умрихина (1964 г.) и др., а также Amaud (1960 г.), Papadopulos и соавторов (1967 г.). Cooper и соавторов (1967 г.), Ramey (1970 г.), Agarval и соавторов (1970 г.), Wattenberger и соавторов (1970 г.), McKinley (1971 г.), Gringarten и соавторов (1972 г.), Earlougher и соавторов (1974 г.) и др. Особенно много публикаций на эту тему появилось в последующие годы, часть из них приводится в библиографии. В плане представления методов применения универсальных кривых при анализе данных ГДИС рассмотрим простейший случай обработки с их помощью данных исследований реагирующих скважин (кривых изменения давления в реагирующих скважинах - гидропрослушивания). Физическое явление изменения давления в любой точке бесконечного однородного пласта при упругом режиме фильтрации после пуска (остановки) возмущающей скважины с постоянным дебитом q, т.е. в условиях простейшей МПФС, описывается следующей функциональной зависимостью - основной формулой теории упругого режима фильтрации (1.25): Переход от безразмерного давления и безразмерного времени к соответствующим размерным величинам, измеренным в любой системе единиц измерения, производится простым пересчетом, которым обычно пользуются при переходе от одной системы единиц к другой. Для осуществления этого пересчета необходимо знать пересчетные коэффициенты, связанные с изменением системы единиц измерения величин. Пересчетные коэффициенты определяются из условия постоянства, неизменности численного значения безразмерных параметров. Допустим, для величин æ и r (1.104) единицы измерения приняты в системе СИ (соответственно м 2 /с и м), а время t измеряется либо в секундах, либо в минутах, либо в часах и т.д. Тогда из условия постоянства численного значения безразмерного времени t g определяются пересчетные коэффициенты n t (соответственно определятся n t =1; = 60; == 3600 и т.д.), необходимые для перехода от размерного времени, измеренного в любой системе, к безразмерному времени. Аналогично находятся пересчетные коэффициенты n р , необходимые для перехода от размерного давления ЛР, измеренного в любой системе, к безразмерному давлению P g Универсальная зависимость (1.1046) в условиях задачи об изменении давления со временем в любой точке пласта при упругом режиме является общей для всех пластов и флюидов, вне зависимости от величин характеризующих констант. Кривая линия, соответствующая графику зависимости P g = P g (t g ) (1.1046), называется универсальной кривой. Наиболее удобно строить эту универсальную кривую в билогарифмических координатах [lgt g ; lgP g ]. С помощью универсальной кривой и фактической кривой, построенной на основании итогов обработки прослеживания за изменением давления (или уровня) в реагирующей скважине, можно определить (оценить) осредненные значения параметров пласта между возмущающей и реагирующей скважинами: коэффициенты пьезопроводности - æ, гидропроводности - kh/m, проводимости - k/m и средней толщины пласта, если известно значение коэффициента упругоемкости пласта b*. Для определения параметров пласта предлагается, по идее В.Н. Щелкачева, сравнивать фактическую кривую изменения (уровня) давления в реагирующей скважине с универсальной кривой, соответствующей зависимости (1.1046). 1.7.1 Пример интерпретации данных реагирующих скважин (гидропрослушивания) с помощью универсальной кривой Универсальная кривая, соответствующая формуле (1.1046), строится в билогарифмических координатах [lgt g ; lgP g ] нa прозрачной пленке или кальке (табл. 1.1, см. также пунктирную кривую на рис. 1.21). Фактическая кривая, соответствующая результатам промысловых исследований и отражающая зависимость АР или AS от t (табл. 1.2), вычерчивается в билогарифмических координатах [lgt; lgAP] или [lgt; lgAS], т.е. наносится на билогарифмическую сетку, аналогично сетке универсальной кривой. Универсальная кривая, снятая на прозрачную пленку или кальку, накладывается на фактическую кривую прослеживания давления в реагирующей скважине в билогарифмических координатах до возможно более полного совмещения, при обязательном соблюдении взаимной параллельности осей абсцисс и ординат фактического и универсального графиков. Сравнивая формулы (1.104а) и (1.1046), видно, что совпадение фактической и универсальной кривых будет свидетельствовать о пропорциональности величин в левых частях формул и аргументов в правых частях. Рис. 1.21. Пример сопоставления универсальной кривой (пунктиром) с фактической кривой изменения давления (уровня) в реагирующей скважине Рассмотрим пример определения осредненных значений параметров пласта по фактической кривой гидропрослушивания реагирующей скважины с помощью сопоставления ее с универсальной кривой. Данные для построения фактической кривой приведены в табл. 1.2. Фактическая кривая гидропрослушивания, построенная в билогарифмических координатах по данным табл. 1.2, показана точками на рис. 1.21. Расстояние между водяными скважинами - 375 м. Дебит возмущающей скважины q=57,15м з /cyт. Следует отметить, что возможно и несовпадение фактической кривой изменения уровня в реагирующей скважине с наложенной на нее универсальной кривой на всем интервале времени исследования. Это несовпадение (особенно в начальных и конечных участках) может вызываться влиянием неустановившихся режимов работы скважин, недостаточной точностью применяемых приборов. В отечественной и зарубежной практике анализа и обработки, фактических КВД-КПД и изменения давления в реагирующих скважинах для сложных МПФС (трещинова тых коллекторов, сложно построенных залежей, горизонтальных скважин и т.д.) с целью определения параметров МПФС широко используются универсальные и эталонные кривые, часто с применением ЭВМ с соответствующим математическим обеспечением процедуры matching. Некоторые публикации на эту тему приведены в библиографии. Диагностическим признаком искомой МПФС среди моделей-кандидатов служит высокая степень совпадения графика фактической сравниваемой КВД с соответствующей универсальной кривой МПФС-кандидата. Неопределенность и неоднозначность в выборе МПФС уменьшаются с увеличением числа испытываемых МПФС-кандидатов из обширного банка (каталога) данных интерпретатора. Для выбора и дискриминации МПФС-кандидатов могут использоваться различные методы - корреляционного сжатия, регрессионного анализа, определения доверительных интервалов и т.д. 1.8 Анализ и характеристики кривых изменения давления для различных типов фильтрационных потоков. Диагностический билогарифмический график Неустановившаяся фильтрация пластовых флюидов к вертикальным и горизонтальным скважинам в реальных пластах может происходить по сложным пространственным траекториям движения. При приближенном математиче ском моделировании сложных течений - создании теоретических МПФС и их последующего исследования и анализа методами подземной гидромеханики - используется приближенный прием замены сложных траекторий течения простыми одномерными фильтрационными потоками и их комбинациями (см. рис. 1.5). Так, например, рассмотрим скважину с одной вертикальной трещиной, работающую с постоянным дебитом q в бесконечном однородном, изотропном горизонтальном пласте с постоянными параметрами (r c , k, ф, m, C t , h) и начальным пластовым давлением Рпл в условиях линейной теории упругого режима фильтрации. Вертикальная трещина вскрывает пласт на всю толщину h и характеризуется параметрами - ширина (раскрытие) трещины 5т, длина трещины 2 Хт, проницаемость Рт, пористость ф т , сжимаемость С t т (см. рис 1.5). Неустановившийся процесс изменения давления после пуска скважины с вертикальной трещиной приближенно представляется как последовательная смена во времени нескольких типов течения: 1) линейный поток внутри вертикальной трещины большой (бесконечной) проводимости к скважине (см. рис. 1.5, б) или однородный линейный фильтрационный поток (ЛФП) в пласте к вертикальной трещине с ограниченной (малой) проводимостью (см. рис. 1.5, в); 2) билинейный фильтрационный поток, когда одновременно во времени проявляются оба вышеперечисленные типа ЛФП - несжимаемый ЛФП в трещине и упругий ЛФП в пласте (см. рис. 1.5, г); 3) в более поздние моменты времени, после некоторого переходного потока в пласте, проявится псевдорадиальный фильтрационный поток (см. рис. 1.5, е). К числу простейших одномерных фильтрационных потоков относятся потоки, в которых скорость фильтрации, давление и другие параметры являются функциями времени и только одной координаты, отсчитываемой вдоль линии тока (предполагается, что траектории движения флюидов совпадают с линиями тока в пласте), и удовлетворяющие основному дифференциальному уравнению линейной теории упругого режима фильтрации (см. «Номенклатуру основных символов...»): или (1) в безразмерной форме - В теории упругого режима фильтрации такие простейшие одномерные фильтрационные потоки могут характеризоваться коэффициентом j в (1), который определяет размерность пространства одного измерения. Так, j = 0 соответствует фильтрационному потоку в пространстве одного измерения - прямолинейно-параллельному (линейному) фильтрационному потоку (ЛФП). Случай j = 1 характеризует поток в пространстве двух измерений - плоскорадиальный (радиальный) фильтрационный поток (РФП). Вариант j = 2 определяет поток в пространстве трех измерений - радиально-сферический (сферический) фильтрационный поток (СФП) (см. рис. 1.5). Основные дифференциальные уравнения для создания теоретических МПФС для каждого из типов одномерных фильтрационных потоков на базе решения соответствующих прямых задач подземной гидромеханики имеют вид: Аналогично могут быть составлены соответствующие дифференциальные уравнения в безразмерной форме на базе уравнения (1.117): Решению прямых и обратных задач подземной гидромеханики для различных одномерных потоков, различных теоретических МПФС, их изучению и анализу в приложении к ГДИС посвящены многочисленные публикации, монографии и специальные обзоры отечественных и зарубежных исследователей, где приведена обширная библиография по этой теме. Представляется целесообразным рассмотреть и проанализировать основные особенности теоретических МПФС и их характерные, диагностические признаки для простейших одномерных фильтрационных потоков с целью их использования для описания сложных пространственных фильтрационных потоков в реальных пластах. Неустановившиеся процессы перераспределения давления после пуска-остановок скважин (источников-стоков) с постоянным дебитом в условиях простейших одномерных потоков при упругом режиме описываются с помощью основных расчетных формул (ОРФ), как это было показано ранее, в концептуальном плане на примере плоскорадиального фильтрационного потока (РФП). Два типа линейного фильтрационного потока (см. рис. 1.5) I тип. ЛФП имеет место при фильтрации к прямолинейной вертикальной трещине или прямолинейной галерее (горизонтальной скважине). В простейшей постановке КПД-КВД в полубесконечном, горизонтальном, однородном по параметрам пласте толщиной h и начальным пластовым давлением Рплнач После пуска (остановки) скважины (прямолинейной галереи шириной В) с постоянным, равномерно распределенным по площади фильтрации дебитом q или, которая до остановки работала на установившемся режиме, описывается следующей ОРФ. Билинейный фильтрационный поток (см. рис. 5) БЛФП к скважине, схематически изображенный на рис. 1.5, г, представляет собой сложный поток, состоящий из одновременного проявления двух линейных фильтрационных потоков. Первый ЛФП - линейный к скважине внутри вертикальной трещины проницаемости ky и раскрытия 5т, половины длины Хт, полностью вскрывающей пласт толщиной h. Второй - линейный в бесконечном однородном изотропном горизонтальном пласте толщиной h и проницаемостью k при линейном упругом режиме (рассмотренном ранее). Так, безразмерное забойное давление в скважине для БЛФП - основная расчетная формула (решение прямой задачи ПГ при сформулированных выше условиях) определяется формулой где Ci - постоянный коэффициент, зависящий от параметров пласта и трещины. Плоскорадиальный филыпраиионный поток (см. рис. 1.5) РФП схематически представлен на рис. 1.5, д. Его основная расчетная формула представляет собой решение соответствующей прямой задачи подземной гидромеханики для линейной теории упругого режима фильтрации (1.119). Основная формула теории упругого режима фильтрации приближенно имеет вид: в размерной форме для КПД -(1.28) или в безразмерной форме (с учетом влияния ствола скважины и S) - (1.28'а). Для КПД соответствующие приближенные ОРФ в координатах Хорнера представляются формулами (1.36) и (1.36') Это условие соответствует т.н. «эмпирическому правилу 1,5 цикла», заключающемуся в том, что время начала РФП на этом диагностическом графике начинается спустя 1,5 цикла после окончания периода влияния ствола скважины ti. Именно начиная с этого момента времени tn формула (1.28) становится справедливой, т.е. начинается РФП. Радиально-сферический фильтуационный поток (см. рис. 1.5) СФП в наиболее общей форме описывается уравнением (1.120) и представляет собой поток, схематически изображенный на рис. 1.5, ж. В другом случае СФП может проявляться в горизонтальном пласте большой толщины h, в котором скважина вскрывает пласт в середине толщины на небольшом ограниченном интервале h Т = g Т (интервале перфорации, например), рассматриваемом как горизонтальная трещина (щель) с раскрытием g Т и радиуса r c Исследование особенностей изменения давлений при СФП в случае МПФС с горизонтальной трещиной в однородном изотропном пласте в условиях линейного упругого режима фильтрации в большинстве работ сводилось к решению приближенной эквивалентной задачи РФП - к гидродинамически совершенной скважине с приведенным радиусом, в котором учитывались размеры трещины и ее проводимость. При исследовании и анализе изменения давления при СФП в наиболее общей постановке в результате интегрирования уравнения (1.120) для случая однородного изотропного пласта была получена формула: Далее используется соотношение (1.123). Разложение показательной функции в ряд с после- дующим почленным интегрированием приводит к следующей формуле разложения функции ошибок erfc(x): уклоном - и является характеристическим для КВД СФП. В обобщенной безразмерной форме зависимость безразмерного давления от безразмерного времени для СФП выражается формулой: где C2 - постоянный коэффициент, зависящий от параметров анизотропии пласта и геометрических размеров трещины и пласта. 1.9 Производные давления и их использование при анализе данных исследования скважин Наиболее простые и широко распространенные, так называемые традиционные методы изучения и анализа данных ГДИС на неустановившихся режимах по КПД-КВД (методы без учета притока - полулогарифмической анаморфозы, Хорнера, характеристических графиков и диагностических билогарифмических графиков, методы с учетом притока и др.) основаны на использовании функциональной зависимости изменения давления от времени - основных расчетных формулах: (ОРФ) Р = P(t) и P g = P g (t g ). Однако механические глубинные манометры из-за своей невысокой чувствительности не позволяют измерять темп изменения давления во времени. Это ограничивает традиционный анализ данных ГДИС только с использованием поведения изменения давления. В середине 80-х годов в нефтегазовой промышленности появились высокоточные электронные глубинные манометры с пьезокварцевыми датчиками, так называемые «электронные глубинные манометры второго поколения», которые позволили резко повысить качество (точность) промысловых КВД-КПД, когда стало возможным измерение скорости изменения давления во времени. Применение этих высокоточных глубинных манометров позволяло вычислять и строить графики производные давления для фактических КВД-КПД снятых на скважинах. Все это привело к мысли использовать производные давления фактических кривых Р' для анализа, интерпретации промысловых КВД-КПД, т.е. как бы «расщепить» теоретическую и фактическую КВД и к ним добавить соответствующие кривые производных давления - Рc = Pc (t) и Рc' = Рc' (t). Таким образом, при анализе и интерпретации, при решении обратной задачи исследуется и сопоставляется поведение пласта и теоретических МПФС с помощью четырех уравнений, а не двух, как при обычных традиционных методах обработки данных ГДИС. В 1983 г группа французских специалистов фирмы «Flopetrol-Johnston» во главе с Bourdet с соавторами опубликовали серию статей, где предложили использовать производную давления для анализа КПД-КВД как весьма чувствительное и мощное средство [95, 96]. Техника использования производной давления впоследствии была усовершенствована самими авторами [97] и другими исследователями для различных МПФС [134, 138, 15 О]. Так, в [97] предлагалось использовать ранее установленные приближенные зависимости безразмерного давления от безразмерного времени для периодов влияния ствола скважины и для периода радиального течения [159] соответственно в виде Для дальнейшего анализа предлагалось использовать так называемую логарифмическую производную. Она применяется, например, когда имеется сложная функция [P g = P g (t g )] и когда легче найти производную от логарифма, чем саму функцию. Так, логарифмическая производная (ЛПД) определяется логарифмическим дифференцированием по соотношению: Псевдорадиальный фильтрационный поток (см. рис. 1.5, е) может наблюдаться в самые поздние моменты времени, после пуска в работу скважины с постоянным дебитом q в центре кругового (замкнутого, закрытого) однородного пласта, и является псевдоустановившимся (равномерно-неустановившимся или квазиустановившимся), неустановившимся фильтрационным потоком. Псевдоустановившийся ПРФП характеризуется линейным изменением давления во времени, описываемым приближенным уравнением (1.171). Уравнения (1.102'), (1.128), (1.134), (1.156) и (1.171) в обобщенной форме можно представить: для различных типов одномерных фильтрационных потоков, из (1.173) и ОРФ находят соответствующие ЛПД для: пласте, в пласте с двойной пористостью, для пластов с непроницаемой внешней границей, для БЛФП, для скважин, гидродинамически несовершенных - с различного рода трещинами, для случая пуска скважины с постоянным противодавлением, для реагирующих скважин в различных МПФС, газовых скважин и т.д.). Подобные палетки и графики нашли широкое применение в зарубежной практике ГДИС. Схематическое представление универсальной палетки диагностических билогарифмических графиков безразмерных давлений и производных во времени для однородного бесконечного пласта представлено на рис. 1.29. Для анализа фактических данных КПД-КВД с целью идентификации одномерных фильтрационных потоков и последующего определения их характеристик и параметров, необходимо обработать полученные фактические КПД-КВД и построить по ним графики логарифмических производных давления АР' и билогарифмический диагностический в координатах [lgt,lgAP']. Для этого возможны несколько вариантов как графического, так и численного дифференцирования фактических данных. В простейшем случае приближенное вычисление производных давления производятся по следующим соотношениям. Рис. 1.28. Теоретические диагностические признаки идентификации одномерных фильтрационных потоков Рис. 1.29. Схематическое представление универсальной палетки где значения с индексами (i-1) и (i+1) отвечают значениям давления и времени «слева» и «справа» от рассматриваемой i-той точки. Практика вычисления логарифмических производных давления по фактически замеренным данным ГДИС (КПД-КВД) показала, что качество соответствующих билогарифмических диагностических графиков, используемых для последующего анализа и оценки параметров фильтрационных потоков и пласта, существенно зависит от наличия «посторонних шумов» и «помех» (вызванных вибрацией оборудования скважины, пульсацией потоков флюидов, погрешностями измерений и расшифровки данных измерений и т.д.). Эти сложности устраняются созданием специальных условий процесса исследования скважин, специальной технологией ГДИС, подбором соответствующих высокоточных глубинных манометров и приборов, применением специальных процедур сглаживания фактических графиков производных давления, о чем будет сказано во второй главе. Для проведения процедуры сравнения наложением фактического и теоретических билогарифмических совмещенных диагностических графиков разработаны специальные программы с использованием ЭВМ. Наряду с ЛПД - логарифмической производной давления для диагностирования поведения реальных КПД-КВД и анализа проявления различных факторов и эффектов, не связанных с пластом, а обусловленных, например, процессами в стволе скважины, - было предложено использовать простую производную давления (ПД), которую для отличия от ЛПД обозначают PPD (первой производной давления), т.е. I ПД. Как известно, теоретическая КВД, снятая после остановки скважины, представляет собой монотонно возрастающую во времени функцию, стремящуюся к величине статического забойного давления в конце периода восстановления давления. I ПД == dP/dt представляет собой уклон графиков КПД-КВД в декартовых координатах [t, P] и является монотонно убывающей функцией. Возрастание функции I ПД во времени свидетельствует о проявлении и влиянии на КВД-КПД побочных факторов, не связанных с поведением пласта, искажающих «истинную КВД-КПД», а, следовательно, затрудняющих корректную интерпретацию данных ГДИС. Применение функции I ПД = dP/dt позволяет выявить те участки фактических КПД-КВД, которые искажены побочными «шумами и помехами», и учитывать эти искаженные участки при обработке и интерпретации. |