Главная страница
Навигация по странице:

  • Альфа-частицы

  • Бета-частицы

  • Гамма-излучение

  • Рентгеновское излучение

  • Гамма-кванты

  • Нейтронное излучение

  • Там полностью пункт 1.3 – бесполезно копировать.

  • вопросы к лабе. Радиоактивность


    Скачать 355.02 Kb.
    НазваниеРадиоактивность
    Анкорвопросы к лабе
    Дата06.11.2022
    Размер355.02 Kb.
    Формат файлаdocx
    Имя файлаVoprosy_k_1_labe.docx
    ТипДокументы
    #772833

    1. Радиоактивность - это свойство атомных ядер определенных химических элементов самопроизвольно превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным. Нельзя повлиять на течение процесса радиоактивного распада, не изменив состояния атомного ядра. На скорость течения радиоактивных превращений не оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.



    1. Альфа-частицы ( -частицы) представляют собой ядра атомов гелия и состоят из двух протонов и двух нейтронов; они имеют двойной положительный заряд и относительно большую массу, превышающую массу электрона в 7300 раз, движутся со скоростью около 20000 км/с. Имеют энергию, которая колеблется в пределах 2 - 11 МэВ. Для каждого данного изотопа энергия альфа-частиц постоянна. Этот вид излучения наблюдается преимущественно у естественных радиоактивных элементов (радий, торий, полоний, уран и др.). Альфа-излучатели при попадании в организм (через поврежденные участки ткани, дыхание, с водой, пищей, радиоактивной пылью) крайне опасны для человека и животных.

    Бета-частицы (β-частицы) представляют собой поток частиц (электроны или позитроны) ядерного происхождения. Позитрон - элементарная частица, подобная электрону, но с положительным знаком заряда. Бета-частицы одного и того же радиоактивного элемента обладают различным запасом энергии (от нуля до некоторого максимального значения). Бета-излучение обладает меньшим эффектом ионизации, чем альфа-излучение. Скорость движения бета-частиц в вакууме равна 1. 1010 - 2,9 . 1010 см/с (0,3 - 0,99 скорости света). Максимальная энергия бета-частиц различных элементов имеет широкие пределы - от 0,015 - 0,05 МэВ (мягкое бета-излучение) до 3 - 12МэВ (жесткое бета-излучение). Удельная ионизирующая способность бетачастицы меньше, чем у альфа-частицы, но выше, чем у гамма-частицы.

    Гамма-излучение (  ) представляет собой поток электромагнитных волн так же, как радиоволны, видимый свет, ультрафиолетовые и инфракрасные лучи, рентгеновское излучение. Различные виды электромагнитного излучения отличаются условиями образования и определенными свойствами (длиной волны, энергией). Гамма-излучение распространяется со скоростью света, оно свободно проходит через тело человека и другие материалы без заметного ослабления. Гамма-излучение распространяется прямолинейно, оно имеет большой пробег в воздухе и может создавать вторичное и рассеянное излучения в средах, через которые проходит.

    Рентгеновское излучение возникает при торможении электронов в электрическом поле ядер атомов вещества (тормозное рентгеновское излучение) или при перестройке электронных оболочек атомов при ионизации и возбуждении атомов и молекул (характеристическое рентгеновское излучение). При различных переходах атомов и молекул из возбужденного состояния в невозбужденное может происходить испускание видимого света, инфракрасных и ультрафиолетовых лучей. Гамма-кванты — это излучение ядерного происхождения. Гаммакванты лишены массы покоя. Это значит, что фотоны существуют только в движении. Они не имеют заряда и поэтому в электрическом и магнитном полях не отклоняются. В веществе и вакууме гамма-лучи распространяются прямолинейно и равномерно во все стороны от источника. Скорость распространения их в вакууме равняется скорости света (3.1010см/с). Частота колебаний гамма-квантов 6 связана с длиной их волны. Чем меньше длина волны, тем больше частота колебаний излучения, тем больше его энергия и, следовательно, проникающая способность. Энергия гамма-излучения естественных радиоактивных элементов колеблется от нескольких килоэлектронвольт до 2 - 3 МэВ и редко достигает 5 - 6 МэВ. Гамма-излучатели редко имеют однозначную энергию квантов. В состав потока гамма-излучения чаще входят кванты различной энергии. Гамма-кванты, не имея заряда и массы покоя, вызывают слабое ионизирующее действие, но обладают большой проникающей способностью. Путь пробега в воздухе достигает 100 - 150 м.

    Нейтронное излучение — поток нейтронов. Заряд - 0, масса - 1а.е.м., энергия - 0,1-20 МэВ, излучается при ядерных превращениях, пробег больше, чем у других излучений.

    Наиболее опасными являются γ - излучения и нейтроны, так как имеют наибольшие пробеги.

    1. Количество любого радиоактивного изотопа со временем уменьшается вследствие радиоактивного распада (превращения ядер). Скорость распада определяется строением ядра. На этот процесс нельзя повлиять никакими обычными физическими или химическими способами, не изменив состояния атомного ядра. Для каждого радиоактивного изотопа средняя скорость распада его атомов постоянна, неизменна и характерна только для данного изотопа. Постоянная радиоактивного распада для определенного изотопа показывает, какая доля ядер распадается в единицу времени. Постоянную распада выражают в обратных единицах времени: с-1 , мин -1 , ч -1 и т. д., чтобы показать, что количество радиоактивных ядер убывает/

    Связь между периодом полураспада и постоянной распада имеет обратную зависимость, т. е. чем больше значение  , тем меньше значение Т, и наоборот:   0,693/T; T  0,693/  .

    Количество радиоактивного вещества обычно определяют не единицами массы (грамм, миллиграмм и т. п.), а активностью данного вещества, которая равна числу распадов в единицу времени. Чем больше радиоактивных превращений испытывают атомы данного препарата в секунду, тем больше его активность. Как следует из закона радиоактивного распада, активность радионуклида пропорциональна числу радиоактивных атомов, т. е. возрастает с увеличением количества данного вещества. Поскольку скорость распада радиоактивных изотопов различна, то одинаковые по массе количества различных радионуклидов имеют разную активность.

    Единицей активности в системе единиц (СИ) служит распад в секунду (расп/с), ее называют беккерель (Бк); 1 Бк = 1 с-1 .

    Также используется единица - кюри (Ки). Кюри - это такое количество любого радиоактивного вещества, в котором число радиоактивных распадов в секунду равно 3,7 * 1010. Единица кюри соответствует радиоактивности 1 г радия. Кюри очень большая величина, поэтому обычно употребляют дробные производные единицы (1 мКи, мкКи, 1 нКи, 1 пКи). 1 Ки = 3,7 * 1010 Бк



    Там полностью пункт 1.3 – бесполезно копировать.

    1. Поглощённая доза — количество энергии Е, переданное веществу ионизирующим излучением любого вида в пересчете на единицу массы m любого вещества. Единица измерения 1 Грей. Внесистемная единица — рад (радиационная адсорбционная доза).

    Экспозиционная доза фотонного, рентгеновского и гамма-излучения характеризует их способность создавать в веществе заряженные частицы. Единица измерения в системе СИ — 1Кулон/кг, внесистемная единица — Рентген.

    Эквивалентная доза поглощения излучения – произведение дозы поглощенного излучения на коэффициент качества H=D*k. Единица эквивалентной дозы – зиверт (1 Зв). 1 Зв равен эквивалентной дозе, при которой доза поглощенного излучения равна 1 Гр.

    5. Биологическое действие рентгеновского и ядерных излучений на организм обусловлено ионизацией и возбуждением атомов и молекул биологической среды. На процесс ионизации излучения расходуют свою энергию. В результате взаимодействия излучений с биологической средой живому организму передается определенное количество энергии. Часть поступающего в организм излучения, которое пронизывает облучаемый объект (без поглощения), действия на него не оказывает. Поэтому основная физическая величина, характеризующая действие излучения на организм, находится в прямой зависимости от количества поглощенной энергии. Для измерения количества поглощенной энергии введено такое понятие, как доза излучения. Это величина энергии, поглощенной в единице объема (массы) облучаемого вещества.

    В биологическом отношении важно знать не просто дозу излучения, которую получил облучаемый объект, а дозу, полученную в единицу времени. В одном случае суммарная доза, значительно превышающая смертельную, но полученная в течение длительного периода времени, не только не приведет к гибели живого, но даже не вызовет у него реакцию лучевого поражения. В другом случае доза меньше смертельной, но полученная в короткий отрезок времени, может вызвать лучевую болезнь различной тяжести.

    6. В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» (НРБ-99),- применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. устанавливают основные пределы доз, допустимые уровни воздействия ионизирующего излучения по ограничению облучения населения 

    «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП 72-80. - распространяются на предприятия, учреждения, лаборатории и другие организации всех министерств и ведомств, которые производят, обрабатывают, применяют, хранят, транспортируют естественные и искусственные радиоактивные вещества и другие источники ионизирующих излучений, перерабатывают и обезвреживают радиоактивные отходы, и регламентируют основные требования по обеспечению радиационной безопасности.

    7. Методы и средства защиты от ионизирующего излучения основываются на следующем: 1 Установление предельно допустимых доз облучения. 2 Контроль уровня радиации. 3 Изоляция излучающих объектов. 4 Применения вентиляции и вытяжных шкафов. 5 Применения защитных экранов. Защитными экранами от ионизирующих излучений являются стенки контейнеров для перевозки изотопов, стенки сейфов для хранения изотопов, а также специальные экраны.

    Особое место занимает защита от ионизирующих излучений при эксплуатации ядерных реакторов и при обращении с ядерными отходами. На современных АЭС применяют многобарьерную систему защиты окружающей среды от ионизирующих излучений. Отходы после переработки (отделение ценных продуктов) подвергаются стеклованию, бетонированию и захоронению в могильниках. Жидкие отходы выпаривают, осадки заливают в стекло. Радиоактивные газы выдерживаются в газгольдерах до снижения активности и выбрасываются в атмосферу.

    8. Измерение уровня ионизирующего излучения проводится с помощью спектрометров, дозиметров, радиометров. Принцип работы измерителя зависит от фиксируемых параметров:

    • Радиометрические – замер активности радионуклидов – источников ионизации.

    • Дозиметрические – замер поглощенной энергии. 

    • Спектрометрические – замер энергии частиц.


    написать администратору сайта