Радиопротекторы современные направления и перспективы
Скачать 59 Kb.
|
Химические радиопротекторы и гипоксияЗначительное снижение биологического воздействия ионизирующего излучения под влиянием общей гипоксии относится к основным представлениям в радиобиологии (сводка данных). Например, по данным Вацека и соавт. (1971), уменьшение содержания кислорода в окружающей среде до 8% во время облучения увеличивает среднюю летальную дозу у мышей на 3—4 Гр. Снижение уровня кислорода до 9,2—11% не приводит к повышению выживаемости мышей, подвергавшихся супралетальному воздействию гамма-излучения в дозе 14,5–15 Гр. Оно выявляется лишь после уменьшения содержания кислорода до 6,7%. Повышение радиорезистентности организма млекопитающего под влиянием химических радиопротекторов в условиях общей гипоксии, имеет не только практическое значение. Оно доказывает, что гипоксия — не единственный механизм защитного действия. Усиление защитного действия цистеина в условиях гипоксии отметили в 1953 г. Майер и Патт. В отношении цистеамина и цистамина эти данные подтвердили Девик и Лоте (1955), позже—Федоров и Семенов (1967). Сочетание индолилалкиламиновых протекторов, гипоксический механизм радиозащитного действия которых считается решающим, с внешней гипоксией, вопреки ожиданиям, также превысило радиозащитный эффект одной гипоксии. Возможность защиты организма с помощью локальной гипоксии костного мозга путем наложения жгута на задние конечности мыши впервые установили Жеребченко и соавт. (1959, 1960). У крыс это наблюдение подтверждено Водиком (1970), у собак—Ярмоненко (1969). В опытах на мышах Баркая и Семенов показали (1967), что локальная гипоксия костного мозга после перевязки одной задней конечности, не дающей выраженного защитного эффекта при летальном облучении в дозах 10,5 и 11,25 Гр, в комбинации с цистамином обусловливает эффективную защиту. Точно так же Ярмоненко (1969) отметил суммацию радиозащитного эффекта после наложения жгута и введения цистеамина мышам. Защитный эффект мексамина не повысился при одновременном наложении зажимной муфты. После введения цистамина крысам с ишемизированными задними конечностями Водик (1971) получил суммацию эффекта и 100% выживание животных при абсолютно летальном в иных условиях гамма-облучении. МЕХАНИЗМ РАДИОЗАЩИТНОГО ДЕЙСТВИЯНесмотря на обширные исследования, радиобиологи не достигли единого, полного и общепризнанного представления о механизме действия химических радиопротекторов, что отчасти является следствием ограниченности современных познаний о развитии радиационного поражения при поглощении энергии ионизирующего излучения живыми организмами. Представления о механизме защитного действия сосредоточены вокруг двух основных групп. 1. Радиохимические механизмы По этим представлениям, радиозащитные вещества либо их метаболиты непосредственно вмешиваются в первичные пострадиационные радиохимические реакции. К ним относятся: — химическая модификация биологически чувствительных молекул-мишеней созданием смешанных дисульфидов между SH-группой аминокислоты белковой молекулы и SH-группой протектора; — передача водорода протектора пораженной молекуле-мишени; — инактивация окислительных радикалов, возникающих преимущественно при взаимодействии ионизирующего излучения с водой пораженной ткани. 2. Биохимико-физиологические механизмы Эти представления объясняют действие радиозащитных веществ их влиянием на клеточный и тканевый метаболизм. Не участвуя в самой защите, они косвенно способствуют созданию состояния повышенной радиорезистентности, мобилизуя собственные резервы организма. К этой группе можно отнести: — высвобождение собственных эндогенных, способствующих защите веществ, таких как эндогенные SH-вещества, в особенности восстановленный глутатион или эндогенные амины (например, гистамин); — подавление ферментативных процессов при окислительном фосфорилировании, синтезе нуклеиновых кислот, белков и др., ведущих к снижению общего потребления кислорода, а в пролиферативных тканях—к отсрочке или торможению деления клеток. Этот эффект объясняется взаимодействием протектора с группами ферментов в митохондриях и эндоплазматическом ретикулуме или с белками клеточных мембран. Он носит также название «биохимический шок»; — влияние на центральную нервную систему, систему гипофиз — надпочечники, на сердечно-сосудистую систему с созданием общей или избирательной тканевой гипоксии. Сама по себе гипоксия снижает образование пострадиационных окислительных радикалов и радиотоксинов, восстанавливает тканевый метаболизм. Затем она может привести к высвобождению эндогенных SH-веществ. Современный исследователи склоняются в пользу биохимических механизмов радиозащиты. Особенно обращает внимание фармакологический аспект взаимодействия радиопротекторов с рецепторами на различных уровнях организма. Возможности защитного действия вещества ограничены количеством воспринимающих рецепторов. Радиозащитное действие серосодержащих веществ, в том числе цистамина и гаммафоса, вероятнее всего, реализуется благодаря их взаимодействию с рецепторами радиочувствительных клеток. Производные индолилалкиламинов — мексамин и серотонин, вызывающие в тканях организма поствазоконстрикторную гипоксию, связаны с рецепторами сердечно-сосудистой системы. Однако известны результаты опытов in vitro и in vivo, которые вызывают сомнения в гипоксической теории защитного действия мексамина и серотонина, в отдельных случаях дополняя ее другими компонентами защитного действия. По данным Свердлова и соавторов (1971), мексамин не утрачивал защитного действия у мышей в условиях тканевой гипероксии. Клеточный компонент защитного действия мексамина обнаружили Богатырев и соавторы (1974) in vitro на облученных клетках костного мозга, полученных от мышей, которым за 15 мин до этого вводили защитную дозу мексамина. Не существует точной корреляции между тканевой гипоксией, вызванной мексамином, и его защитным действием. Мексамин вызывает гипоксию в селезенке продолжительностью несколько часов, хотя в более позднее время после введения он уже не обладает радиозащитным действием. Радиозащитный эффект мексамина нельзя объяснять только его несомненным и значительным гипоксическим действием. Следует согласиться с представлением, что мексамин реализует свое защитное действие и непосредственным влиянием на обменные процессы в клетках. Проблема понимания механизма радиозащитного действия химических веществ тесно связана с выяснением закономерности развития пострадиационных, изменений. Любая существенная информация в этих областях основных радиобиологических исследований уточняет наши представления о механизмах, как радиационного поражения, так и радиозащиты. |