Главная страница
Навигация по странице:

  • 1 Теоретическая часть Процессоры

  • Разработка единичного технологического процесса сборки персонального компьютера по дисциплине технологические процессы в сервисе


    Скачать 222.57 Kb.
    НазваниеРазработка единичного технологического процесса сборки персонального компьютера по дисциплине технологические процессы в сервисе
    Дата25.10.2021
    Размер222.57 Kb.
    Формат файлаdocx
    Имя файлаBaykov_Kursovaya_finalochka12.docx
    ТипПояснительная записка
    #255439
    страница1 из 4
      1   2   3   4

    Министерство науки и высшего образования Российской Федерации

    федеральное государственное бюджетное образовательное учреждение

    высшего образования

    «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

    МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

    им. Н.П. ОГАРЁВА»

    (ФГБОУ ВО «МГУ им. Н.П. Огарёва»)
    Институт электроники и светотехники

    Кафедра информационной безопасности и сервиса
    ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ
    по теме: разработка единичного технологического процесса сборки персонального компьютера

    по дисциплине: технологические процессы в сервисе

    Автор курсового проекта _____________________ С.П. Байков

    подпись, дата

    Обозначение курсового проекта КП – 02069964 – 43.03.01 – 02 – 21

    Направление подготовки 43.03.01 сервис (профиль информационный сервис)

    Руководитель курсового проекта

    канд. тех. наук, доц. _____________________ Е.Г. Алексеев

    подпись, дата

    Проект защищен ___________ Оценка ___________

    дата
    Саранск 2021

    Министерство науки и высшего образования Российской Федерации

    федеральное государственное бюджетное образовательное учреждение

    высшего образования

    «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

    МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

    им. Н.П. ОГАРЁВА»

    (ФГБОУ ВО «МГУ им. Н.П. Огарёва»)

    Институт электроники и светотехники

    Кафедра информационной безопасности и сервиса
    ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ
    Студент: Байков Сергей Петрович

    1 Тема: разработка единичного технологического процесса сборки персонального компьютера

    2 Срок представления работы к защите: 22.10.2021

    3 Исходные данные:

    3.1 Теоретический вариант: процессоры, система охлаждения

    4 Содержание курсового проекта:

    4.1 Теоретическая часть

    4.1.1 Процессоры

    4.1.2 Система охлаждения

    4.2 Технология сборки персонального компьютера

    4.3 Приложение А. Комплект технологической документации сборочного технологического процесса
    Руководитель проекта 31.03.2021 Е.Г. Алексеев
    Задание принял к исполнению 31.03.2021 С.П. Байков

    РЕФЕРАТ
    Курсовой проект содержит 43 страницы, 7 рисунков,10 использованных источников, 1 приложение.

    ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР, СБОРКА, МАТЕРИНСКАЯ ПЛАТА, ОПЕРАТИВНАЯ ПАМЯТЬ, ПРОЦЕССОР, ВИДЕОКАРТА, БЛОК ПИТАНИЯ, КОРПУС, СИСТЕМА ОХЛАЖДЕНИЯ, НАКОПИТЕЛЬ.

    Объектом исследования является технологический процесс сборки персонального компьютера.

    Цель проекта: описать назначение, классификацию, структуру процессора п и системы охлаждения; описать технологический процесс сборки персонального компьютера; разработать комплект технологической документации на технологический процесс сборки персонального компьютера.

    Полученные результаты: информационный обзор на материнскую плату и оперативную память; презентация технологии сборки персонального компьютера; комплект технологической документации на технологический процесс сборки персонального компьютера.

    Степень внедрения – частичная.

    Область применения – практическая деятельность.

    Эффективность – повышение качества знаний по данной теме.


    СОДЕРЖАНИЕ

    ВВЕДЕНИЕ 5

    1 Теоретическая часть 7

    1.1 Процессоры 7

    1.2 Система охлаждения 21

    2 Технология сборки персонального компьютера 39

    4 ЗАКЛЮЧЕНИЕ 42

    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 43

    ПРИЛОЖЕНИЕ А (обязательное) 44
    ВВЕДЕНИЕ

    С течением времени IT сфера претерпела множество изменений, связанных с быстрым развитием технологий, использованием новых материалов в разработке комплектующих, обильным разнообразием нового софта и ещё множеством факторов.

    На смену исполинским ЭВМ пришли настольные персональные компьютеры, а за последние годы «мозгами» обзавелись телефоны, часы, различные контроллеры и даже пылесосы.

    Особое место в таком скачке, безусловно, заняли процессоры. Именно в них происходит «мозговая деятельность» устройств. По сути своей процессор – это транзисторная микросхема. Если быть точным, то он представляет собой специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединённые напылёнными алюминиевыми проводниками. Сам же кристалл помещён в керамический корпус с контактами, которые в свою очередь, присоединяются к материнской плате.

    Размеры современных процессоров поражают. Они изготавливаются по 0,13-микронной технологии, т.е. толщина кристалла процессора составляет 0,13 микрон. Для сравнения - толщина кристалла первого процессора Intel была 10 микрон. В первом процессоре компании Intel - i4004, выпущенном в 1971 году, на одном кристалле было 2300 транзисторов, а в процессоре Intel Pentium 4, выпущенном 14 апреля 2003 года, их уже 55 миллионов.  

    Но существует обратная сторона медали. При увеличении тактовых частот соответствующим образом увеличивается тепловыделение электронных компонентов. Так как у электронных схем работоспособность обеспечивается при узком диапазоне температур, то увеличение тепловыделения не может происходить бесконечно. Для решения этой проблемы можно пойти несколькими путями: во-первых, внедрение новых процессорных архитектур, технологических процессов позволяет снизить тепловыделение, но при появлении старших процессоров семейства это преимущество теряется. Существует второй путь - усовершенствовать системы охлаждения процессоров. Именно в этом направлении сейчас идет большинство производителей процессоров. За последние несколько лет эволюция систем охлаждения прошла путь от радиаторов, которыми довольствовались процессоры Intel 80486 до современных систем охлаждения на основе тепловых трубок.

    В данной курсовой работе будет проведён анализ современных процессоров и систем охлаждения. Будет рассмотрен принцип работы процессоров и систем охлаждения, их виды и сравнительные характеристики. Отдельно будет рассмотрен пример сборки обычного персонального компьютера с учётом необходимости поддержания оптимального температурного режима.

    1 Теоретическая часть


      1. Процессоры


    Центральный процессор - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

    Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС).

    Изначально термин «Центральное процессорное устройство» описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

    Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

    Большинство современных процессоров для персональных компьютеров, в общем, основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

    Д. фон Нейман придумал схему постройки компьютера в 1946 году. Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

    Этапы цикла выполнения:

    • процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;

    • пыставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

    • процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

    • если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

    • снова выполняется п. 1.

    Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства). Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания.

    Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

    Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

    Рассмотрим конвейерную архитектуру процессора. Конвейерная архитектура (pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

    • получение и декодирование инструкции (Fetch) ;

    • адресация и выборка операнда из ОЗУ (Memory access) ;

    • выполнение арифметических операций (Arithmetic Operation) ;

    • сохранение результата операции (Store).

    После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

    Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполнения m команд понадобится nm единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n + m единиц времени.

    Факторы, снижающие эффективность конвейера:

    • простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);

    • ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);

    • очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

    Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

    Первым общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели. Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

    Рассмотрим технологию изготовления процессоров. В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

    В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали еще, по крайней мере, 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

    Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 740 кГц и стоил 300 долл.

    За годы существования технологии микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например, Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC - архитектуры) и IA-64 (EPIC-архитектура).

    Большинство процессоров используемых в настоящее время являются Intel-совместимыми, то есть имеют набор инструкций и пр., как процессоры компании Intel.

    Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Среди процессоров от Intel: 8086, i286 (в компьютерном сленге называется «двойка», «двушка»), i386 («тройка», «трёшка»), i486 («четвёрка»), Pentium («пень», «пенёк», «второй пень», «третий пень» и т. д. Наблюдается также возврат названий: Pentium III называют «тройкой», Pentium 4 - «четвёркой»), Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Quad, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 - Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.).
      1   2   3   4


    написать администратору сайта