Главная страница
Навигация по странице:

  • 1.2.2 Термическое сопротивление системы охлаждения

  • 1.2.3 Элементы Пельтье

  • Разработка единичного технологического процесса сборки персонального компьютера по дисциплине технологические процессы в сервисе


    Скачать 222.57 Kb.
    НазваниеРазработка единичного технологического процесса сборки персонального компьютера по дисциплине технологические процессы в сервисе
    Дата25.10.2021
    Размер222.57 Kb.
    Формат файлаdocx
    Имя файлаBaykov_Kursovaya_finalochka12.docx
    ТипПояснительная записка
    #255439
    страница3 из 4
    1   2   3   4

    1.2.1 Основные компоненты системы воздушного охлаждения
    Радиатор служит для распределения тепла охлаждаемого объекта (в нашем случае - ядра процессора) в окружающую среду. Он должен находиться в непосредственном физическом контакте с охлаждаемым объектом. Так как тепло от одного тела к другому передаётся через поверхность, то площадь контакта радиатора и процессора должна быть как можно большей. Сторона, которой радиатор прилегает к процессору, называется основанием или подошвой. Тепло от ядра переходит к основанию, потом распределяется по всей поверхности радиатора (причём распределение это - неравномерное) и отводится в окружающую среду. Если на радиаторе не установлен вентилятор, то процесс такого отвода тепла называется излучением.

    Увеличить эффективность излучения можно, если повысить площадь поверхности радиатора. Для этого они изготавливаются ребристыми: на основание устанавливаются рёбра, с которых и происходит отвод тепла в окружающую среду. Рёбра должны быть как можно более тонкими и они должны иметь как можно более лучший контакт с основанием (в идеале радиатор должен быть монолитным). Плоские радиаторы (без рёбер) получили название "распределители тепла".Чтобы радиатор эффективно рассеивал тепло, он должен обладать высокой теплопроводностью и теплоёмкостью.

    У радиаторов с высокой теплопроводностью температура основания и кончика рёбер различается незначительно и тепло эффективно отводится со всей поверхности. Теплоёмкость, как известно из курса физики, определяет количество теплоты, которое необходимо сообщить телу для увеличения его температуры на 1 градус.

    Радиатор с низкой теплоёмкостью будет иметь температуру, близкую к температуре самого процессорного ядра и ни о каком охлаждении здесь говорить не придётся. Он должен иметь высокую теплоёмкость, ведь при остывании тела на один градус оно отдаёт то же количество теплоты, которое получило при нагреве на один градус. Именно поэтому радиатор с высокой теплоёмкостью всегда будет иметь значительно меньшую температуру, чем ядро процессора. Эти две физические величины определяются материалом, используемым для изготовления радиатора.

    Удельные теплопроводность и теплоёмкость металлов. Идеального материала для создания радиатора не существует. Серебро имеет самую высокую теплопроводность, но это очень дорогой металл, да и теплоёмкость у него невысокая. Медь имеет чуть меньшую теплопроводность и почти в полтора раза большую теплоёмкость. Этот материал лучше всего подходит для изготовления основания радиаторов. Алюминий имеет в 1,6 раз меньшую теплопроводность, чем у меди, но в 2,29 раз большую теплоёмкость. Данный метал лучше применять для рёбер радиаторов. Золото имеет высокую теплопроводность, большую, чем у алюминия, но меньшую, чем у меди.

    Некоторые производители систем охлаждения, такие как Zalman и Glacialtech сообщают о том, что их топовые модели систем охлаждения имеют радиаторы, покрытые тонкой плёнкой золота. В этом нет смысла с точки зрения теплопроводности. Всё же толщина этой плёнки слишком мала для влияния на физические свойства радиатора. То же самое касается никеля. Никелированные радиаторы с эстетической точки зрения, конечно, более привлекательны, но не с точки зрения термических свойств. Так как идеального контакта между двумя металлами добиться очень сложно, то зачастую большую эффективность имеют радиаторы из одного материала - чисто медные или чисто алюминиевые, но это уже зависит от конкретного производителя радиаторов. Потому что, как правило, радиаторы с медным основанием и алюминиевыми рёбрами охлаждают лучше, чем чисто алюминиевые, а медные охлаждают ещё лучше.

    Помимо материала радиатора большое значение имеет его конструкция. Конфигурация рёбер: их высота, длина, расположение на основании рассчитываются индивидуально для каждой модели систем охлаждения. Но смысл расчетов всегда сводится к одному: воздух должен беспрепятственно и равномерно проходить по всей поверхности радиатора. Турбулентность (завихрения воздушного потока) в радиаторе, как правило, улучшает отвод тепла от рёбер и основания к воздушному потоку, но снижает скорость этого потока. Так что определённо сказать, положительно ли влияет турбулентность на охлаждение или нет применимо ко всем системам охлаждения нельзя. Но так как в настоящее время многие производители систем охлаждения стараются сделать поток воздуха внутри системы охлаждения более линейным (некоторые производители, например Thermaltake, даже выпускают переходники для вентиляторов, которые выравнивают поток воздуха через радиатор), можно сделать вывод, что для процессорных систем охлаждения прямой поток лучше турбулентного, хотя даже в этом потоке будут сохраняться небольшие завихрения.
    1.2.2 Термическое сопротивление системы охлаждения
    Выше мы говорили о составляющих компьютерных систем охлаждения, но теперь пришло время поговорить и об устройстве в целом. Мы уже говорили о величинах, характеризующих радиаторы и вентиляторы. Как правило, производители компьютерных охлаждающих устройств указывают эти характеристики, но имея в продуктовой линейке одни и те же системы охлаждения, различающиеся всего лишь моделями вентиляторов или с одинаковыми вентиляторами, но разными радиаторами, появляется необходимость в одной характеристике для всего охлаждающего устройства.

    Эта характеристика - термическое сопротивление. Оно измеряется в Цельсиях на Ватт (C/W) и определяет, насколько поднимется температура процессора при увеличении его тепловыделения на один Ватт. Чем ниже термическое сопротивление, тем лучше. Чтобы посчитать термическое сопротивление системы охлаждения, надо вычесть из температуры ядра процессора температуру воздуха над вентилятором и разделить эту разность на мощность процессора.

    Для современных систем охлаждения обычное термическое сопротивление – 0,38 C/W. Но дело в том, что не все производители систем охлаждения честно указывают термическое сопротивление. Пример тому - компания Molex, рекламирующая низкое термосопротивление своих охладителей, но на деле оказывается, что эта величина далека от реальной. Поэтому я рекомендую смотреть на другие характеристики систем охлаждения - производительность и уровень шума вентиляторов и тип радиатора. Тепловой интерфейс.

    Соответственно, чем больше площадь этой поверхности, тем выше будет эффективность работы системы охлаждения. Но, к сожалению, идеально гладких поверхностей не имеет ни основание радиатора, ни ядро процессора. Небольшие шероховатости, углубления и царапины при соприкосновении образуют воздушные подушки, а воздух имеет очень малую теплопроводность. Чтобы улучшить тепловой контакт, применяют различные тепловые интерфейсы - термопасты или прокладки. Эти интерфейсы имеют высокую теплопроводность и при контакте заполняют собой неровности поверхности, избавляя, таким образом, поверхности от воздушных подушек. Контакт радиатора и процессора без теплового интерфейса.

    Теплопроводящие прокладки обычно создаются из полимерных материалов или из графитовой пыли. Последние чаще всего использовались в системах охлаждения, поставляющихся с процессорами Intel. Материал полимерных прокладок обладает свойством изменять своё состояние, проще говоря, при нагреве он разжижается и заполняет собой воздушные подушки. Термопрокладки чаще всего уже нанесены на поверхность основания радиатора. Сейчас всё чаще полимерные прокладки заменяются термопастами. Паста так же может быть нанесена на поверхность радиатора или может поставляться в пакетиках, тюбиках или шприцах. Контакт радиатора и процессора с тепловым интерфейсом. Термопасты могут производиться на основе различных материалов с разной теплопроводностью.

    На сегодняшний день известны кремниевая, бескремниевая, керамическая, алюминиевая, медная, серебряная и золотая термопаста. Название говорит о материале, используемом в термопасте. Для теплопроводящей пасты существуют две характеристики, определяющие качество теплового интерфейса: это - теплопроводность и средний размер зерна. Так как пасты создаются на основе измельчённой пыли того или иного материала, то величина зерна и есть средний размер одной пылинки. Чем меньше этот размер, тем лучше паста будет заполнять собой все неровности поверхности радиатора. Хорошим тепловым интерфейсом считается паста с зерном 0,38 мкм и теплопроводностью 8 Вт/м*K.

    Контакт радиатора и процессора с тепловым интерфейсом, имеющим мелкую зернистость. Кстати, многие, наверное, задавались вопросом, почему термопасты на основе таких материалов, как алюминий, медь, серебро или золото, не вызывают короткого замыкания на процессоре, ведь эти металлы являются отличными проводниками электрического тока. Процент указанного на ней металла может быть, в серебряной пасте, например, может быть от 1% до 75% серебра. Остальное - вещества с очень высокими электроизоляционными свойствами.

    Так что, конечно, не стоит допускать того, чтобы паста попадала на электрические контакты, но даже если это случится, едва ли она вызовет короткое замыкание. Сегодня такие известные производители систем охлаждения, как Titan и другие менее известные поставляют свои системы охлаждения, укомплектованные шприцами с серебряной термопастой. Точнее сказать, с термопастой на серебряной основе. Дело в том, что не каждая серебристая термопаста сделана на основе этого металла. К примеру, Titan под маркой "Silver Grease" продаёт пасту на основе оксида серебра. В этой пасте менее 10% металла. Конечно, её не сравнить с пастой "Arctic Silver" от одноимённого производителя, имеющей в своём составе до 80% серебряной пыли чистотой 99.9%. Однако, два грамма такой пасты стоят как самый дорогой воздушная система охлаждения Titan.. Несмотря на то, что это достаточно дорогой тепловой интерфейс, стоимость свою она оправдывает. Хорошая термопаста всегда сохраняет свою текучесть: она никогда не ссыхается, не расползается и не вытекает.
    1.2.3 Элементы Пельтье
    Несмотря на то, что параметры традиционных систем охлаждения непрерывно улучшаются, в последнее время на компьютерном рынке появились и специальные средства охлаждения электронных элементов, основанные на термоэлектрических эффектах в полупроводниках. В частности, по мнению специалистов, полупроводниковые термоэлектрические модули, охлаждающие свойства которых основаны на эффекте Пельтье, чрезвычайно перспективны для создания необходимых условий эксплуатации компьютерных компонентов. Кстати, подобные средства уже много лет успешно применяются в различных областях науки и техники. Так, в 60-70-х годах прошлого века отечественная промышленность предпринимала неоднократные попытки выпуска бытовых малогабаритных холодильников на основе эффекта Пельтье.

    Однако несовершенство технологий того времени, низкие значения кпд и высокие цены не позволили подобным устройствам покинуть научно-исследовательские лаборатории и испытательные стенды. Благодаря своим тепловым и эксплуатационным свойствам устройства, созданные на основе термоэлектрических модулей (модулей Пельтье), позволяют достичь необходимого уровня охлаждения компьютерных элементов без особых технических трудностей и финансовых затрат.

    В качестве систем охлаждения электронных компонентов такие средства чрезвычайно перспективны: они компактны, удобны, надежны и обладают очень высокой эффективностью. Особенно большой интерес полупроводниковые систем охлаждения представляют в качестве средств, обеспечивающих интенсивное охлаждение в компьютерных системах, элементы которых установлены и эксплуатируются в жестких форсированных режимах. Использование таких режимов разгона (overclocking) часто обеспечивает значительный прирост производительности электронных компонентов, а следовательно, и всей системы.

    Однако работа в подобных режимах сопровождается значительным тепловыделением и нередко находится на пределе возможностей компьютерных архитектур и микроэлектронных технологий. Необходимо отметить, что высоким тепловыделением сопровождается работа не только процессоров, но и современных высокопроизводительных видеоадаптеров, а в некоторых случаях и модулей памяти. Эти мощные элементы требуют для корректной работы интенсивного охлаждения даже в штатных режимах и тем более в режимах разгона.

    В системах охлаждения Пельтье используется так называемый термоэлектрический холодильник, действие которого основано на эффекте Пельтье. Данный эффект назван в честь французского часовщика Пельтье (1785-1845), сделавшего свое открытие более полутора столетий назад - в 1834 г. В экспериментах Пельтье было установлено, что при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, помимо традиционного джоулева тепла, выделяется или поглощается (в зависимости от направления тока) дополнительное тепло. Количество выделяемой или поглощаемой теплоты пропорционально силе тока. Это явление было названо явлением Пельтье, а дополнительное тепло получило название тепла Пельтье.

    Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов. Описанный эффект по своей сути обратен ранее открытому явлению Зеебека, наблюдаемому в замкнутой электрической цепи, состоящей из разнородных металлов или полупроводников. Если температуры в местах контактов металлов или полупроводников различаются, то в цепи появляется электрический ток. Это явление термоэлектрического тока и было открыто в 1821 г. немецким физиком Зеебеком (1770-1831).

    Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается и выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника, в результате чего происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а полной энергии. Эффект Пельтье, как и многие термоэлектрические явления, особенно сильно выражен в цепях, составленных из полупроводников с электронной (n-тип) и дырочной проводимостью (p-тип). Такие полупроводники, как известно, называются соответственно полупроводниками n- и p-типа.

    Рассмотрим термоэлектрические процессы, происходящие при контакте таких полупроводников. Допустим, направление электрического поля таково, что электроны в электронном и дырки в дырочном полупроводнике будут двигаться навстречу друг другу. Электрон из свободной зоны полупроводника n-типа после прохождения через границу раздела попадает в заполненную зону полупроводника p-типа и там рекомбинирует с дыркой. В результате рекомбинации высвобождается энергия, которая выделяется в контакте в виде тепла (рисунок 3).

    Рисунок 3 - Выделение тепла Пельтье в контакте полупроводников n- и p-типа.
    При изменении направления электрического поля на противоположное электроны и дырки в полупроводниках соответствующего типа будут двигаться в противоположные стороны. Дырки, уходящие от границы раздела, будут пополняться в результате образования новых пар при переходах электронов из заполненной зоны полупроводника p-типа в свободную. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Электроны и дырки, образующиеся при рождении таких пар, увлекаются электрическим полем в противоположные стороны. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар, и в результате в контакте поглощается тепло (рисунок 4).



    Рисунок 4 - Поглощение тепла Пельтье в контакте

    полупроводников n- и p-типа.
    Модули Пельтье - объединение большого количества пар полупроводников p- и n-типа позволяет создавать охлаждающие элементы - термоэлектрические модули, или, как их еще называют, модули Пельтье, сравнительно большой мощности. Структура полупроводникового термоэлектрического модуля Пельтье представлена на (рисунке 5).


    Рисунок 5 - Использование полупроводников p- и n-типа в термоэлектрических модулях.

    Модуль Пельтье - это термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников p- и n-типа, образующих p-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов.

    В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой нагревается и служит для отвода тепла. Помещенный холодной стороной на поверхность защищаемого им объекта термоэлектрический модуль, основанный на эффекте Пельтье, по сути выступает как тепловой насос, перекачивая тепло от этого объекта на горячую сторону модуля, охлаждаемую воздушным или водяной системой охлаждения. Как любой тепловой насос, он описывается формулами термодинамики. Поэтому модули Пельтье можно назвать не только термоэлектрическими, но и термодинамическими модулями. На (рисунке 6) представлен внешний вид типового полупроводникового термоэлектрического модуля Пельтье.


    Рисунок 6 - Полупроводниковый термоэлектрический модуль Пельтье.
    Типичный модуль обеспечивает значительный температурный перепад - в несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор (холодильник) позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье (при условии адекватного их охлаждения). Это позволяет сравнительно простыми, дешевыми и надежными средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов.



    Рисунок. 7 - Конструкция системы охлаждения с модулем Пельтье.
    Устройства охлаждения на основе модулей Пельтье часто называют активными термоэлектрическими системами охлаждения, или активными системи охлаждения Пельтье, или просто систем охлаждения Пельтье. Такая систем охлаждения обычно состоит из термоэлектрического модуля, выполняющего функции теплового насоса, и понижающих температуру горячей стороны радиатора и охлаждающего вентилятора. На рис. 7 представлена схема активной систем охлаждения, в составе которого использован полупроводниковый термоэлектрический модуль.

    Использование термоэлектрических модулей Пельтье в активных систем охлаждения делает их существенно более эффективными по сравнению со стандартными системи охлаждения на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования систем охлаждения с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры аппаратных средств компьютеров. Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размера и от числа и параметров используемых в нем пар полупроводников p- и n-типа.

    Модуль малой мощности не способен обеспечить необходимый уровень охлаждения, что приводит к нарушению работоспособности электронного элемента, например, процессора, из-за перегрева. Однако применение модулей слишком большой мощности может понизить температуру охлаждающего радиатора до уровня конденсации влаги из воздуха, что может привести к коротким замыканиям в электронных цепях компьютера. Здесь уместно напомнить, что расстояние между проводниками на современных печатных платах нередко составляет доли миллиметров.

    Тем не менее именно мощные модули Пельтье в составе высокопроизводительных систем охлаждения и соответствующие системы дополнительного охлаждения и вентиляции позволили в свое время фирмам KryoTech и AMD в совместных исследованиях разогнать процессоры AMD, созданные по традиционной технологии, до частоты, превышающей 1 ГГц, т. е. увеличить их частоту почти в два раза по сравнению со штатным режимом. Необходимо еще подчеркнуть, что данный уровень производительности был достигнут в условиях достаточной стабильности и надежности работы процессоров в форсированных режимах. Следствием же такого экстремального разгона стал рекорд производительности среди процессоров архитектуры и системы команд 80х86. Заметим здесь, что фирма KryoTech прославилась не только своими экспериментами с экстремальным разгоном процессоров.

    Широкую известность получили ее установки глубокого охлаждения компьютерных компонентов. Снабженные соответствующей электронной начинкой, они оказались востребованными в составе платформ высокопроизводительных серверов и рабочих станций. A компания AMD получила подтверждение высокого уровня своих изделий и богатый экспериментальный материал для дальнейшего совершенствования архитектуры процессоров. К слову сказать, аналогичные исследования проводились также с процессорами корпорации Intel, и в них был зафиксирован значительный прирост производительности.
    1   2   3   4


    написать администратору сайта