Главная страница
Навигация по странице:

  • Естественные науки привнесли в

  • Аналитика унаследовала

  • с количественными данными

  • В аналитику

  • Аналитика. 2004_Курносов ЮВ, Конотопов ПЮ_Аналитика_3,9 Mb. Рецензенты


    Скачать 3.9 Mb.
    НазваниеРецензенты
    АнкорАналитика
    Дата16.03.2023
    Размер3.9 Mb.
    Формат файлаpdf
    Имя файла2004_Курносов ЮВ, Конотопов ПЮ_Аналитика_3,9 Mb.pdf
    ТипДокументы
    #995619
    страница8 из 62
    1   ...   4   5   6   7   8   9   10   11   ...   62
    1.2
    ЕСТЕСТВЕННОНАУЧНЫЕ КОНЦЕПЦИИ
    Общеизвестным является тот факт, что на протяжении обозримой истории человечества крупные естественнонаучные открытия не единожды революционизирующе влияли на общественные процессы, коренным образом изменяя мировоззрение людей.
    Следом за такими крупными мировоззренческими прорывами серьезные изменения происходили в идеологической, политической, экономической и социальной сфере.
    В качестве примеров таких открытий принято приводить ссылку на открытие Н. Коперника, приведшее к замене геоцентрической модели мира на гелиоцентрическую, вступившую в противоречие с христианской космогонией.
    После осознания последствий этого открытия информация о нем была закрыта
    (декрет инквизиции от 1616 г.), а книги, посвященные этой теории, оставались запрещенными вплоть до 1828 года. Аналогичным по масштабам мировоззренческих перемен открытием стала механика И. Ньютона, способная объяснять и описывать подавляющее большинство наблюдаемых физических явлений. Механика Ньютона оставила еще меньше места для «божьего промысла» и спровоцировала бурное развитие физикалистских концепций, легших в основу последующих преобразований в экономике и общественной жизни. К числу таких открытий относят также эволюционную теорию
    Ч. Дарвина, теорию относительности А. Эйнштейна, хотя их последствия были менее чувствительны для общества. Тем не менее, эти открытия обусловили значимые процессы в науке, а отклик научной деятельности А. Эйнштейна,
    Э. Ферми догнал человечество в августе 1945 года, когда японские города
    Хиросима и Нагасаки поверглись атомной бомбардировке, а человечество было вынуждено решать проблему сдерживания гонки ядерных вооружений.
    На рубеже XIX — XX веков физики первыми столкнулись с неспособностью механики Ньютона разрешить все проблемы и противоречия, а принципы детерминизма (однозначности и непреложности действия причинно- следственных отношений) и редукционизма (сведения целого к совокупности частей) зачастую противоречат реально наблюдаемым процессам. По мере увеличения степени дробления (декомпозиции) объектов и процессов на компоненты происходило лавинообразное нарастание сложности уравнений, описывающих их взаимодействие, но точность научных предсказаний не росла.
    В то же время, перед наукой ставились все более масштабные задачи, для

    80 решения которых она не располагала рецептами, — анализ биологических, экологических, экономических и социальных систем средствами детерминистской науки оказался невозможен. Началось постепенное
    вытеснение физикализма с позиций универсальной мировоззренческой
    системы. Этот процесс, инициированный физиками, затронул и общественные науки. Естественнонаучные подходы, утратив довлеющий характер, вновь стали исключительной принадлежностью тех отраслей деятельности, для которых, собственно, и разрабатывались.
    Однако роль естественных наук в информационно-аналитической работе не исчерпывается той ролью, которые они сыграли, продемонстрировав несводимость целого к механистичной композиции частей и спровоцировав тем самым развитие комплекса системных наук. Естественные науки привнесли в
    аналитику методологию научных исследований, что крайне важно, поскольку благодаря этому аналитика перешла из разряда искусств в разряд научных дисциплин. Это позволило аналитике получить общественное признание и приобрести статус ремесла, что было очень важно в период, когда
    Европу охватил научный ажиотаж
    33
    . Учитывая то, что на протяжении многих веков аналитика являлась предметом эзотерических манипуляций, те изменения, которые она претерпела в XIX веке благодаря влиянию естественнонаучных концепций, стали действительно революционными.
    Аналитика унаследовала от естественных наук способность к
    научному обоснованию аналитических выводов на основе операций не только и не столько с качественными, но и с количественными данными,
    возможность формального представления рассуждений и описания
    методов (а значит, и накопления знаний в этой сфере). По мере развития методологии научных исследований естественнонаучные методы начали перекочевывать в науки об обществе и общественном производстве, чем спровоцировали зарождение социологии, экономической статистики и других наук, требовавших интенсификации процессов обмена информацией.
    Зарождение этих наук расширило информационную базу принятия решений
    в управлении, так как операции с данными, получаемыми в ходе статистических исследований в экономической и социальной сфере, позволяли
    повысить объективность аналитических выводов, экспериментально
    проверить их и оценить степень точности прогнозов.
    Аналитика, ранее не имевшая столь мощного доказательного аппарата, стала быстро пополнять свой методологический инструментарий новыми научными методами, развивать инфраструктуру информационного обеспечения аналитической деятельности. Органы государственного управления стали
    33
    В конце XIX в. аналитические технологии начали активно использоваться в экономике и социологии, в США были созданы первые антикризисные центры, включавшие ученых различного профиля.

    81 усиленно развивать аналитику, а заодно — систему разведывательно- информационного обеспечения процессов принятия решений в политической, экономической, социальной и технологической сферах. На XIX — начало XX веков приходится всплеск активности в сфере разведывательной деятельности
    — государства вкладывают все большие ассигнования в финансирование разведывательных служб. Параллельно, благодаря достижениям в области освоения технологий связи и телекоммуникаций, создается информационная инфраструктура общества.
    В этот период естественнонаучные дисциплины, способствуя развитию математики, стали основным поставщиком идей для аналитики. В аналитику
    приходят методы математического анализа, теории множеств,
    математической
    статистики,
    теории
    вероятностей,
    методы
    отображения результатов наблюдений и активизации сознания (наглядное представление аналитических рассуждений и выводов является признанным способом активизации интеллектуальной деятельности). Развитие численных методов стимулирует развитие отрасли аналитики, связанной с анализом погрешностей и оцениванием точности прогнозов.
    Происходит процесс сегментации аналитики по области приложения
    результатов. Мощная ветвь аналитики формируется в области экономического и финансового анализа, социологии, политологии; аналогичный процесс наблюдается и внутри этих ветвей — возникает анализ микро- и макро- экономических показателей. Зарождается анализ социальной динамики, динамики демографических процессов, миграции населения. Рост массивов накапливаемой информации постепенно позволяет перейти к решению задач прогнозирования и планирования.
    Однако помимо тех видов данных, в качестве поставщиков которых выступают перечисленные выше отрасли анализа, специалисты в области анализа (особенно в военно-политической и экономической сфере) всегда стремились к получению данных более высокой степени объективности, использование которых позволило бы проверять (верифицировать) гипотезы, данные и, соответственно, — аналитические выводы. Возникает необходимость создания технических средств (не способных к целенаправленному искажению данных) сбора информации. При крупных экономически самостоятельных организационных системах (государства, корпорации и т. д.) начинают создаваться службы сбора данных, использующие для их добывания
    технические средства. Данным, собранным с помощью таких средств, присваивается особый статус.
    В конце XIX — начале XX веков в особое направление разведывательно- информационного обеспечения органов управления различного уровня выделяется
    технологическая
    разведка, призванная не допустить технологического прорыва в той или иной сфере. Это приводит к обострению противостояния разведывательных и контрразведывательных служб. Этот

    82 период характеризуется напряженной борьбой за обладание технологическими секретами противника (конкурента) — начало века сопровождается целой серией крупных разоблачений, эхо которых отдалось в произведениях
    А. Конан-Дойла, А. Кристи и Г. Честертона и других известных писателей. И тут аналитика столкнулась с проблемой технической и технологической
    экспертизы, поскольку добываемые технологической разведкой образцы техники, чертежи и документация редко были полнофункциональными либо образовывали полный комплект — требовалось восстановление массы деталей, без которых процесс создания аналогичных образцов техники, не уступающих или превосходящих по своим качествам прототипы, был бы невозможен.
    Аналитика интегрирует результаты, получаемые в самых разнообразных научных отраслях: от математики до синоптики и метеорологии. Однако, по мере увеличения массивов информации, в обработке которых возникает потребность, аналитика сталкивается с теми же ограничениями, что и естественные науки: количество математических операций растет, а точность по-прежнему оставляет желать лучшего. В результате, правда с некоторым запозданием, аналитику настигает волна того же кризиса, что ранее потряс физику. Это запаздывание было вызвано тем, что в сфере управления единожды установившиеся подходы замещаются несколько медленнее, нежели в других сферах, где стоимость последствий эксперимента существенно ниже (хотя сам эксперимент может стоить очень дорого), а также тем, что возраст специалистов в сфере управления существенно выше. Между тем, известно, что по мере взросления человека происходит ухудшение динамических показателей процесса обновления и пополнения знаний.
    Следует отметить, что со времен И. Ньютона естественные науки неоднократно вторгались в область компетенции аналитики. В период 1910—
    1930-х годов — А.А. Богдановым и Л. фон Берталанфи были выдвинуты концепции системных наук, пришедшие из медицины и биологии (где может быть более наглядно продемонстрирован принцип несводимости частей к целому?). Позже (в начале 1950-х) в эту отрасль вторглись физики, вернее — физико-химик, один из основоположников термодинамики бельгийский ученый
    И.Р. Пригожин, открывший явления самоорганизации в термодинамических системах, проявлявшиеся в открытых неравновесных системах в условиях, препятствующих установлению равновесия (позже эти явления были обнаружены и в других сложных системах, в том числе — социальных).
    Представляет интерес теория циклов, основы которой были заложены отечественными учеными Н.Д. Кондратьевым (1920-е годы) и А.Л. Чижевским
    (1930—1940-е годы) — заметим, что исследования последнего из упомянутых носили междисциплинарный характер, увязывая циклы в развитии общественных систем и с циклическим характером солнечной активности.
    Теория циклов была взята на вооружение западными экономистами (именно

    83
    Н.Д. Кондратьевым в 1920-х была выдвинута теория длинных экономических волн, согласно которой экономика капиталистических стран каждые 50-55 лет испытывает подъемы и спады).
    Однако, аналитика, вернее, специалисты, активно практикующие в этой области, и сами проявляли методологическую активность. Несмотря на разразившийся в науке методологический кризис, специалисты в области аналитики остались верными основным методологическим принципам естественных наук. Критическое переосмысление ошибок, вызванных слепым следованием физикалистским концепциям, привело к тому, что в недрах аналитики начали зарождаться новые — комплексные методы обработки и анализа информации.
    Интеллектуальные усилия лучших ученых того времени не могли не принести результата — вскоре естественные науки вновь мощно заявили о себе благодаря ученым, работавшим в тех отраслях, которые ранее не привлекали особого внимания — в медицине и биологии. В России таким ученым был петербургский медик А.А. Богданов, с 1912 по 1928 год разрабатывавший основы новой системной науки — тектологии
    34
    , незаслуженно забытой соотечественниками благодаря критике со стороны В.И. Ленина (критика, кстати, была направлена не столько против тектологии, сколько на довольно эклектичную и непоследовательную философскую теорию, которую развивал
    Богданов). Позже, в 1937 году, когда рассуждения о кризисе физикализма в научных кругах стали считаться банальными, другой ученый — биолог
    Л. фон Берталанфи выступил на философском семинаре в Чикагском университете с идеей «Общей теории систем». Оба ученых (Богданов и
    Берталанфи), исходя из постулата о несводимости частей системы к целому, указывали на нечто сходное, общее для всех сложных систем, привносимое системными связями и приводящее к проявлению специфических свойств системы.
    Несмотря на то, что А.А. Богдановым была издана трехтомная монография, посвященная тектологии, его работы не получили широкой известности (даже после перевода на немецкий язык, сделанного в конце двадцатых годов). А вот всего одно, но сделанное вовремя и в политически стабильной обстановке, выступление Л. фон Берталанфи сразу же вызвало резонанс в научных кругах США — ему-то и досталась слава основателя системных наук. А.А. Богданов изначально позиционировал свою тектологию в двух ипостасях: как общую методологию научной деятельности и как теорию эффективного управления. Похожие взгляды на общую теорию систем были характерны и для Л. фон Берталанфи. Дальнейшее же развитие положений
    34
    Богданов А.А. Всеобщая организационная наука (тектология). Ч. I—III. — Л.-М.:
    Книга. — 1925—1928 гг.

    84 общей теории систем, позволило учитывать при анализе сложных систем и их способность к реализации функции целеполагания.
    Предложенная Л. фон Берталанфи общая теория систем, в результате дальнейшего развития породившая целое семейство системных наук
    (системный анализ, системотехнику и иные), была задумана как инструмент объединения различных исследовательских программ — в конце 1930-х годов необходимость этого стала остро ощущаться уже и в сфере практической деятельности. Физика же, со свойственной ей в тот период ориентацией на все более углубляющуюся декомпозицию объектов и систем, к этому времени утратила свои интегрирующие свойства (хотя в термодинамике уже формировались подходы, впоследствии востребованные большинством научных отраслей). Оказалось, что междисциплинарные исследования протекают более эффективно, если за основу при изучении систем различной природы принимается иной подход, а именно — поиск общих закономерностей поведения. Возможность описания таких систем с применением сходного формального аппарата навела на мысль о существовании общих закономерностей, в равной степени проявленных в функционировании систем разной природы.
    По существу проблема, поставленная Л. фон Берталанфи, — это проблема объединения в рамках общей теории систем теоретической биологии, кибернетики, теории информации, теории иерархии и термодинамики
    35
    . До того времени, пока эта проблема не будет решена, общая теория систем будет оставаться теорией аналогической
    36
    , то есть — лишенной практической значимости из-за отсутствия параметрического аппарата, который был бы способен связать различные уровни абстракции и сделать реалистичными описания этих связей. Подобная теория должна опираться на единичные инвариантные элементарные структуры и построенные на них более высокие — иерархические. Только в таком виде общая теория систем способна стать реальным инструментом исследования сложных систем (от техногенных до социальных).
    Отсутствием на настоящее время такого комплексного подхода обусловлен рост числа различных направлений, «отпочковавшихся» от общей теории систем и приспособленных к решению некоторого числа специфических проблем в конкретных отраслях деятельности человека. Попыткам приведения общей теории систем в состояние, когда она действительно сможет стать интегрирующей научной дисциплиной, посвящено множество работ различных авторов. Характерной чертой всех этих работ является их ориентированность
    35
    См.: Берталанфи Л. фон. Общая теория систем: критический обзор // Исследования по общей теории систем. — М.: Прогресс, 1969.
    36
    См.: Уемов А.И. Общая теория систем. Аналогический и параметрический варианты // Природа. — 1975. — № 11.

    85 на привлечение к решению этой проблемы достижений термодинамики, кибернетики, теории самоорганизующихся систем и биологии (этот перечень остается достаточно стабильным — в остальном же авторы таких теорий не столь единодушны).
    Изначально Л. фон Берталанфи определил систему как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой». Однако это определение позже неоднократно подвергалось корректировке.
    Рассмотрим принципы, на которых строится общая теория систем:
    1. Принцип системности: возникновение и существование любой системы обусловлено силами, действие которых обеспечивает возникновение и существование связей между ее элементами.
    2. Принцип существования: всякая система, чтобы обеспечить свое существование, должна уравновешивать в себе все воздействия на нее со стороны полной совокупности существующих систем.
    3. Принцип эволюции: возникновение и существование всех систем обусловлено эволюцией.
    4. Принцип разнообразия: разнообразие объектов обусловлено историей их возникновения и развития.
    Характерно, что все большее внимание по мере продвижения исследований в области теории систем уделяется проблеме структуры и структурной стабильности. Так, отечественный ученый-биолог и специалист в области общей теории систем А.А. Малиновский
    37
    считает роль структуры определяющей для установления типа и характеристик системы в целом — в качестве аргумента он ссылается, в том числе, и на существование принципиального сходства структуры млекопитающих, обитающих в разных средах и отличающихся по массе.
    Соответственно, отечественный ученый М.И. Штеренберг
    38
    предлагает дополнить определение системы, данное Л. фон Берталанфи, указанием на необходимость сохранения системой структурной стабильности. В результате чего может быть сформулировано следующее определение:
    1   ...   4   5   6   7   8   9   10   11   ...   62


    написать администратору сайта