Главная страница
Навигация по странице:

  • РЕФЕРАТ по дисциплине АСТРОНОМИЯ по теме «

  • Цель

  • 2. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

  • 2.1 Теория событий, происходивших на заре истории Солнечной системы

  • 2.2 Гипотеза о коррекции орбит внутренних планет

  • 3.1 Формирование звёзд из диффузной межзвёздной среды

  • 3.2 Превращение протозвезды в обычную звезду

  • 4. ЗАВИСИМОСТЬ ЭВОЛЮЦИИ ЗВЕЗД ОТ ИХ МАССЫ

  • описание того, как произошли и эволюционировали небесные тела

  • ОБРАЗЕЦ. !!!!! ОБРАЗЕЦ. Реферат по дисциплине астрономия по теме Происхождение и эволюция небесных тел


    Скачать 473.5 Kb.
    НазваниеРеферат по дисциплине астрономия по теме Происхождение и эволюция небесных тел
    АнкорОБРАЗЕЦ
    Дата04.04.2022
    Размер473.5 Kb.
    Формат файлаdoc
    Имя файла!!!!! ОБРАЗЕЦ.doc
    ТипРеферат
    #441079


    МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ

    Государственное бюджетное профессиональное образовательное учреждение

    Иркутской области

    «Ангарский промышленно – экономический техникум»

    (ГБПОУ ИО «АПЭТ»)

    РЕФЕРАТ

    по дисциплине АСТРОНОМИЯ

    по теме «Происхождение и эволюция небесных тел»

    Выполнил:

    Долгополов Виктор

    Андреевич

    студент группы ИСПР1-1

    специальность: 09.02.07

    Информационные системы

    и программирование
    Руководитель:

    Большедворская Нателла

    Александровна


    г. Ангарск

    2020

    ОГЛАВЛЕНИЕ

    ВВЕДЕНИЕ 3

    1.СОЛНЕЧНАЯ СИСТЕМА 4

    2. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ 5

    2.1 Теория событий, происходивших на заре истории Солнечной системы 5

    2.2 Гипотеза о коррекции орбит внутренних планет 6

    3. ПРОИСХОЖДЕНИЕ ЗВЕЗД 8

    3.1 Формирование звёзд из диффузной межзвёздной среды 8

    3.2 Превращение протозвезды в обычную звезду 9

    4. ЗАВИСИМОСТЬ ЭВОЛЮЦИИ ЗВЕЗД ОТ ИХ МАССЫ 10

    ЗАКЛЮЧЕНИЕ 11

    ЛИТЕРАТУРА 12

    ПРИЛОЖЕНИЯ 13


    ВВЕДЕНИЕ



    На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы. Однако возможности планетной космологии и по сей день остаются весьма ограниченными – для эксперимента в лабораторных условиях доступны пока лишь метеориты и образцы лунных пород. Парадокс современной астрономии состоит в удивительно низком уровне знаний о Солнечной системе. Астрономия в рамках известных физических законов способна построить близкие к реальности модели рождения, жизни и смерти небесных объектов, размеры, массы, энергетическая отдача и удаленность которых громадны по сравнению с реалиями повседневного опыта. И в то же время нет надежной модели происхождения и формирования планет и спутников Солнечной системы, неизвестно, как образуются и откуда появляются кометы, неясно, содержат ли астероиды первичное вещество или являются осколками однажды уже сформировавшихся планетных тел.
    Цель: описание того, как произошли и эволюционировали небесные тела.

    Задачи:

    1. изучить информацию о Солнечной системе и небесных телах;

    2. узнать о составе небесных тел и их эволюции;

    3. рассказать о развитии звёзд и их происхождении;

    4. сделать вывод о происхождение и эволюции небесных тел.

    1.СОЛНЕЧНАЯ СИСТЕМА


    Рассмотрение современных естественнонаучных концепций мы начнем с мега мира - той части окружающего мира, которую можно обнаружить, посмотрев ночью на небо. Большинство из звёзд образуют устойчивые конфигурации - созвездия - час за часом двигающиеся по небу, некоторые - планеты - медленно, месяц за месяцем перемещаются относительно других. Можно ограничиться констатацией этого факта, можно путем продолжительных наблюдений попытаться найти закономерности видимых перемещений. Солнце (рис. 1) - стало одной из звезд небосклона, его тепло и свет оказались той же природы, что и едва заметный свет звезд, а их источник - ядерные реакции - воспроизведен в земных условиях. Планеты, проявляя в своем движении законы механики, стали двигаться по орбитам вокруг центрального тела - Солнца - в соответствии с законом всемирного тяготения.

    2. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ


    Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце 20 — начале 21 века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, Пояс Койпера был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем Меркурий.

    2.1 Теория событий, происходивших на заре истории Солнечной системы


    Сделаем краткий набросок современной теории событий, происходивших на заре истории Солнечной системы. Облако межзвездного газа и/или пыли ("солнечная туманность") было возмущено и сколлапсировало под действием собственной гравитации. Возмущение могло быть вызвано, например, ударной волной от близкого взрыва сверхновой. При коллапсе в центре облака поднялись температура и давление. Этой температуры хватило для испарения пыли. Начальная стадия коллапса заняла менее 100000 лет.

    Центральная часть облака сжимается достаточно сильно для того, чтобы стать протозвездой, а остальная часть газа вращается (течет) вокруг нее. Большая часть этого газа движется внутрь и добавляется к массе формирующейся звезды, но на вращающийся газ действует центробежная сила, которая частично предотвращает падение его на протозвезду. Вместо этого вокруг звезды формируется "аккреционный диск". Диск излучает свою энергию и охлаждается (рис. 2).

    Первая критическая точка. В зависимости от деталей процесса газ, вращающийся вокруг звезды (протозвезды) может стать неустойчивым и начать сжиматься под действием собственной гравитации. Так образуется двойная звезда. Если же не так, то ... Газ остывает пока температура не становится достаточно низкой для конденсации крошечных частичек металлов, силикатов и (достаточно далеко от формирующейся звезды) льда (т.е. некоторая часть газа превращается обратно в пыль). Металлы конденсируются практически сразу после образования аккреционного диска (4.55-4.56 миллиардов лет назад, как показал изотопный анализ некоторых метеоритов); силикаты образовались несколько позднее (между 4.4 и 4.55 миллиардами лет назад). Пылинки сталкиваются друг с другом и слипаются в более крупные частицы. Этот процесс продолжается, пока частицы не достигают размеров больших камней или маленьких астероидов (рис. 3).

    Вторая критическая точка. Насколько велики эти протопланеты и как быстро они формируются? К этому времени, приблизительно через миллион лет после того как остыла туманность, от звезды должен был начать дуть сильный звездный ветер, который вымел бы весь газ, оставшийся в протопланетной туманности. Если протопланета уже была достаточно большой, то ее гравитация успела притянуть газ из туманности и образовался бы газовый гигант. Маленькие же протопланеты должны были остаться каменными или ледяным телами. В этой точке своей эволюции Солнечная система состояла только из твердых протопланетных тел и газовых гигантов. "Планетозимали" иногда сталкивались бы друг с другом и становились постепенно более массивными.

    В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого был рожден спутник Земли Луна. Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела известных сейчас.

    Одной из нерешенных проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырех планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала.

    Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет.

    2.2 Гипотеза о коррекции орбит внутренних планет


    Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счет взаимодействия с газом, а за счет взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту. Все планеты произошли из единого протопланетного газопылевого облака (туманности) в результате его конденсации и аккреции образовавшихся сгустков материала и рассеянного вещества. Более крупные скопления росли быстрее за счет присоединения к себе меньших агрегатов и рассеянного материала и пре-вращались в зародыши планет – планетезимали.

    В конце стадии аккреции, т. е. приблизительно 4,5 млрд лет назад, под влиянием быстрого накопления тепловой энергии за счет трансформированной метеоритной кинетической энергии внешняя оболочка планет претерпела полное расплавление.

    В результате последующего остывания внешних слоев литосферы образовалась кора. В ее состав вошли более легкие компоненты основной магмы. Более тяжелые, благодаря гравитационной дифференциации, сконцентрировались ниже коры, образовав мантию планеты. На этот же период приходится расплавление и центральной области планеты за счет накопления радиогенной и гравитационной энергии. Таким образом, на раннем этапе существования планет произошла дифференциация их вещества на ядро, мантию и кору.

    Индивидуально происходило развитие внешней области планет. Формирование природной обстановки происходило и происходит под влиянием климатического фактора, но степень его полноты весьма неодинаковая на разных планетах, а отсюда и неодинаков эффект его действия. Важнейшим условием здесь является наличие или отсутствие у планеты атмосферы и гидросферы. Причем определяющим следует признать не сам факт их наличия или отсутствия, а определенное сочетание их параметров. Для атмосферы это будут химический состав, плотность, температурный режим, циркуляция и т. д.; для гидросферы – общая масса воды и ее фазовое состояние – твердое, жидкое или газообразное. Из них наибольшей активностью обладает вода в жидкой фазе.

    3. ПРОИСХОЖДЕНИЕ ЗВЕЗД


    Сейчас установлено, что звезды и звездные скопления имеют разный возраст, от величины порядка 1010 лет (шаровые звездные скопления) до 106 лет для самых молодых (рассеянные звездные скопления и звездные ассоциации).

    3.1 Формирование звёзд из диффузной межзвёздной среды


    Многие исследователи предполагают, что звезды образуются из диффузной межзвездной среды. В пользу этого говорит положение молодых звезд в пространстве – они сконцентрированы в спиральных ветвях галактик, там же, где и межзвездная газопылевая материя. Диффузная среда удерживается в спиральных ветвях галактическим магнитным полем. Звезды этим слабым полем удерживаться не могут. Поэтому более старые звезды меньше связаны со спиралями. Молодые звезды образуют часто комплексы, такие, как комплекс Ориона, в который входит несколько тысяч молодых звезд. В комплексах наряду со звездами содержится большое количество газа и пыли. Газ в этих комплексах быстро расширяется, а это значит, что раньше он представлял собой более плотную массу.

    Сам процесс формирования звезд из диффузной среды остается пока не вполне ясным. Если в некотором объеме, заполненном газом и пылью, масса диффузной материи по каким-то причинам превзойдет определенную критическую величину, то материя в этом объеме начнет сжиматься под действием сил тяготения. Это явление называется гравитационной конденсацией. Величина критической массы зависит от плотности, температуры и среднего молекулярного веса.

    Расчеты показывают, что необходимые условия могут создаться лишь в исключительных случаях, когда плотность диффузной материи становится достаточно большой. Такие условия могут возникать в результате случайных флуктуаций, однако не исключено, что увеличение плотности может происходить и в результате некоторых регулярных процессов. Наиболее плотными областями диффузной материи являются, по-видимому, глобулы и "слоновые хоботы" – темные компактные, непрозрачные образования, наблюдаемые на фоне светлых туманностей. Глобулы имеют вид круглых пятнышек, "слоновые хоботы" – узких полосок, которые вклиниваются в светлую материю. Глобулы и "слоновые хоботы" являются наиболее вероятными предками звезд, хотя прямыми доказательствами этого мы не располагаем. В качестве косвенного подтверждения могут рассматриваться кометообразные туманности. Эти туманности выглядят подобно конусу кометного хвоста. В голове такой туманности обычно находится звезда типа Т Тельца – молодая сжимающаяся звезда. Возникает мысль, что звезда образовалась внутри туманности. В то же время сама туманность напоминает по форме и расположению "слоновые хоботы".

    Очень многое в процессе звездообразования остается не ясным. Не все исследователи соглашаются, например, с тем, что звезды образуются из диффузной межзвездной материи.

    3.2 Превращение протозвезды в обычную звезду


    Итак, пусть по каким-то причинам облако межзвездной материи достигло критической массы и начался процесс гравитационной конденсации. Пылевые частицы и газовые молекулы падают к центру облака, потенциальная энергия гравитации переходит в кинетическую, а кинетическая энергия в результате столкновений – в тепло. Облако нагревается и вследствие увеличения температуры возрастает его излучение. Оно превращается в протозвезду (звезда в начальной стадии развития). Судя по тому, что молодые звезды наблюдаются группами, можно думать, что в начале процесса гравитационной конденсации облако межзвездной материи разбивается на несколько частей и одновременно образуется несколько протозвезд.

    Полный поток энергии, излучаемой протозвездой, определяется, как можно показать, обычным законом масса – светимость, но размеры протозвезды значительно больше. Поэтому температура ее поверхности много меньше, чем у обычной звезды такой же массы, и на диаграмме спектр – светимость протозвезды должны располагаться справа от главной последовательности. По мере сжатия протозвезды температура ее увеличивается, и она перемещается по диаграмме Герцшпрунга - Рессела сначала вниз, потом влево, почти параллельно оси абсцисс. Когда температура в недрах звезды достигает нескольких миллионов градусов, начинаются термоядерные реакции.

    Сначала "выгорает" дейтерий, а затем литий, бериллий и бор. Сжатие в результате выделения дополнительной энергии замедляется, но не прекращается совсем, так как эти элементы быстро оказываются израсходованными. Когда температура повышается еще больше, начинают действовать протон-протонные реакции (для звезд с массой, меньшей 1,5 MЅ) или углеродно-азотный цикл (для звезд с большей массой). Эти реакции могут поддерживаться длительное время, сжатие прекращается и протозвезда превращается в обычную звезду главной последовательности. Давление внутри звезды уравновешивает притяжение, и она оказывается в устойчивом состоянии. Время гравитационного сжатия сравнительно невелико. Оно зависит от массы протозвезды. Чем больше масса, тем быстрее протекает процесс гравитационной конденсации. Протозвезды, имеющие такую же массу, как Солнце, сжимаются за 108 лет. Так как сжатие происходит быстро, наблюдать звезды в этой первой наиболее ранней стадии эволюции трудно.

    4. ЗАВИСИМОСТЬ ЭВОЛЮЦИИ ЗВЕЗД ОТ ИХ МАССЫ


    По современным представлениям, жизненный путь одиночной звезды определяется её начальной массой и химическим составом. Чему равна возможная минимальная масса звезды, с уверенностью мы сказать не можем. Дело в том, что маломассивные звёзды очень слабые объекты и наблюдать их довольно трудно. Теория звёздной эволюции утверждает, что в телах массой меньше чем семь-восемь сотых долей массы Солнца долговременные термоядерные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звёзд. Их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звёзд не превосходит 2—3 тыс. градусов. Одним из таких тусклых багрово-красных карликов является ближайшая к Солнцу звезда Проксима в созвездии Центавра.

    В звездах большой массы, напротив, эти реакции протекают с огромной скоростью. Если масса рождающейся звезды, превышает 50 – 70 солнечных масс, то после загорания термоядерного топлива чрезвычайно интенсивное излучение своим давлением может просто сбросить излишек массы. Звезды, масса которых близка к предельной, обнаружены, например, в туманности Тарантул в соседней с нами галактике Большое Магелланово Облако. Есть они и в нашей Галактике. Через несколько миллионов лет, а может быть и раньше, эти звезды могут взорваться как сверхновые (так называют взрывающиеся звезды с большой энергией вспышки).

    Строение звёзд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества, подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составляет конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, а его объём уменьшается. Внешние же области звезды при этом расширяются, она увеличивается в размерах, а температура её поверхности падает. Горячая звезда — голубой гигант — постепенно превращается в красный гигант.

    Срок жизни звезды напрямую зависит от её массы. Звёзды с массой в 100 раз больше солнечной живут всего несколько миллионов лет. Если масса составляет две-три солнечных, срок жизни увеличивается до миллиарда лет.

    ЗАКЛЮЧЕНИЕ


    Современная теория эволюции звезд способна объяснить общий ход развития звезд и находится в удовлетворительном качественном и количественном согласии с данными наблюдений. В дальнейшем теория должна учесть влияние вращения и магнитные поля, роль которых может быть особенно важной в процессе образования звезд и на быстрых стадиях эволюции, таких, например, как взрывы сверхновых звезд. Особую проблему представляют эволюции звезд в тесных двойных системах, где на эволюцию влияет обмен веществом между компонентами. Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и не видимое глазу излучение звёзд. Сейчас уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного.
    Таким образом, с поставленной целью: описание того, как произошли и эволюционировали небесные тела справились через решение следующих задач:

    1. изучили информацию о Солнечной системе и небесных телах;

    2. узнали о составе небесных тел и их эволюции;

    3. рассказали о развитии звёзд и их происхождении;

    4. сделали вывод о происхождение и эволюции небесных тел.

    ЛИТЕРАТУРА


    1. Агекян Т. А. Звезды галактики, метагалактики. — 3-е изд., перераб. — М.: Наука, Главная редакция физико-математической литературы, 1981, 415 с.

    2. Шкловский И. С. Звезды: Их рождение, жизнь и смерть. — 3-е изд., перераб. — М.: Наука, Главная редакция физико-математической литературы, 1984, 384 с.

    3. Ляхова К.А. Популярная история астрономии и космических исследований. — Издательство «Вече» — М.: Ляхова К.А. 2002, 495 с.

    4. Стивен Хокинг Stephen W. Hawking. A Brief History of Time From the Big Bang to Black Holes - 191 с.

    5. Стивен Хогинг Black Holes and Baby Universes and Other Essays - 191 с.

    6. Воронцов-Вельяминов Б. Происхождение небесных тел – М.: Воениздат, 1947, 44 с.

    7. Гусейханов М.К., Происхождение и эволюция небесных тел Земли. — [Электронный ресурс] — Режим доступа. — URL: https://studme.org/147920/matematika_himiya_fizik/proishozhdenie_evolyutsiya_nebesnyh_zemli свободный (дата обращения 01.02.2020)

    8. Возникновение и эволюция небесных тел. — [Электронный ресурс] — Режим доступа. — URL: https://studopedia.org/13-38876.html свободный (дата обращения 01.02.2020)

    9. Происхождение небесных тел. — [Электронный ресурс] — Режим доступа. — URL: https://religion.wikireading.ru/109730 свободный (дата обращения 01.02.2020)

    ПРИЛОЖЕНИЯ




    Рисунок 1. Солнце



    Рисунок 2. Круговорот газа и пыли в галактике



    Рисунок 3. Так выглядел один из этапов возникновения планетной системы из газопылевого облака.



    написать администратору сайта