Главная страница
Навигация по странице:

  • (ОрИПС – филиал СамГУПС) Реферат по дисциплине ___ Электрические машины_______________________

  • Схемы распределительных устройств 110 (220) кВ, 35 кВ, 10(6) кВ, 27,5 кВ, 3,3 кВ .Регулирование напряжения. Сопротивление элементов цепи при трех, двух и однофазных к.з

  • Рис. 1. Схема ГПП напряжением 35...220/6 (10) кВ с секционированной системой шин на стороне напряжения 6 (10) кВ

  • Рис. 2. Схема ГПП напряжением 35...220/6 (10) кВ с четырьмя секциями сборных шин напряжением 6 (10) кВ

  • Рис. 3. Конструктивная схема открытой понизительной подстанции напряжением 110/6 кВ

  • Рис. 4. Общий вид однотрансформаторной подстанции типа 1КТГ1 110/6 (10) кВ с короткозамыкателем и отделителем

  • Рис. 5. Общий вид (а) и план (б) передвижной подстанции напряжением 35/6 кВ в блочном исполнении

  • Регулирование напряжения

  • Сопротивление элементов цепи при трех, двух и однофазных к.з.

  • Электрические машины. Реферат по дисциплине Электрические машины на тему


    Скачать 278.31 Kb.
    НазваниеРеферат по дисциплине Электрические машины на тему
    АнкорЭлектрические машины
    Дата25.04.2022
    Размер278.31 Kb.
    Формат файлаdocx
    Имя файлаElektricheskie_mashiny.docx
    ТипРеферат
    #496769

    О
    РЕНБУРГСКИЙ ИНСТИТУТ ПУТЕЙ СООБЩЕНИЯ-


    ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

    ВЫСШЕГО ОБРАЗОВАНИЯ

    «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

    (ОрИПС – филиал СамГУПС)

    Реферат

    по дисциплине ___Электрические машины_______________________

    на тему Схемы распределительных устройств 110 (220) кВ, 35 кВ, 10(6) кВ, 27,5 кВ, 3,3 кВ .Регулирование напряжения. Сопротивление элементов цепи при трех, двух и однофазных к.з.

    Сделал: Курбангалеев А.Д, Митькин М.

    Оренбург 2021 г.

    Схемы распределительных устройств 110 (220) кВ, 35 кВ, 10(6) кВ, 27,5 кВ, 3,3 кВ .Регулирование напряжения. Сопротивление элементов цепи при трех, двух и однофазных к.з
    Главные понизительные подстанции, питающие крупные промышленные предприятия, включают в себя распределительные устройства на напряжение 35...220 и 6 (10) кВ, главные трансформаторы на напряжение 35...220/6 (10) кВ, трансформаторы собственных нужд на напряжение 6 (10)/0,4 кВ, конденсаторные батареи напряжением 6 (10) кВ, щиты управления электроснабжением, мастерские и т. д.

    На ГПП, как правило, устанавливают два одинаковых трансформатора на 35...220/6 (10) кВ. Необходимость двух трансформаторов обусловлена тем, что на современных промышленных предприятиях преобладают нагрузки второй категории и обычно имеются нагрузки первой категории, для питания которых необходимо иметь два независимых источника. Установка более двух трансформаторов неэкономична и применяется в основном лишь при расширении предприятия. Главные понизительные подстанции размещают вблизи центра нагрузки.

    При установке на ГПП двух трансформаторов, питаемых от разных линий электропередачи, создаётся возможность применения надёжных и высокоэкономичных упрощённых схем: блока линия 35...220 кВ — трансформатор ГПП и блока линия на 35...220 кВ — трансформатор ГПП — токопровод на 6 (10) кВ. Эти схемы не содержат сборных шин и выключателей на стороне первичного напряжения ГПП, а на стороне вторичного напряжения 6 (10) кВ обычно имеют одиночную секционированную систему шин или токопроводы от каждого трансформатора. Одно- трансформаторные ГПП можно применять при наличии возможности обеспечить резервное питание нагрузок первой и второй категорий по сети напряжением 6 (10) кВ от соседних подстанций или ТЭЦ. Экономичность этих схем и индустриализация монтажа подстанций возросли в связи с изготовлением последних на заводе в виде блочных подстанций типа КТПБ.

    На рис. 1 приведена схема ГПП напряжением 35...220/6 (10) кВ для предприятия средней мощности, получающего электроэнергию от энергосистемы по двум радиальным линиям BЛ1 и BЛ2. Трансформаторы Т1, Т2 подключают к линиям только через разъединители QS1, QS2 РЛНД (разъединитель с линейным контактом, наружной установки, двухколонковый), так как при радиальной схеме нет необходимости в отделителях. Перемычка между цепями напряжением 35...220 кВ, позволяет питать каждый трансформатор не только от своей, но и от другой линии. По условиям ремонта в перемычку включают последовательно два разъединителя (на схеме QS3, QS4). Согласно СН 174-75, следует применять в основном схему без перемычки напряжением 35...220 кВ, но допускается использование её в тех случаях, когда по условиям работы ГПП возникает необходимость в питании двух трансформаторов от одной линии, например при загрузке трансформаторов свыше 70 %, когда при отключении одного из них нагрузка другого превышает 140%.

     

    Рис. 1. Схема ГПП напряжением 35...220/6 (10) кВ с секционированной системой шин на стороне напряжения 6 (10) кВ

    На вводах к трансформаторам устанавливают короткозамыкатели QK1, QK2: в сетях с глухозаземлённой нейтралью — в одной фазе, в сетях с изолированной нейтралью — в двух. Короткозамыкатель автоматически включается при срабатывании релейной защиты в результате внутренних повреждений в трансформаторе ГПП, к которым нечувствительна защита с помощью головных выключателей линий BЛ1 и ВЛ2 энергосистемы. При включении короткозамыкателя создаётся искусственное короткое замыкание на входах высшего напряжения (ВН) трансформатора. На такое короткое замыкание реагирует релейная защита линии в системе и отключает соответствующую линию.

    Двухобмоточные трансформаторы ГПП имеют схему соединения обмоток У/Д-11 или У0/Д-11. Включение нейтралей трансформаторов 110...220 кВ на землю осуществляется через однополюсные разъединители QS5, QS6 типа ЗОН. Последние включают не всегда. Число включенных на землю нейтралей регулируют так, чтобы ток одно- и двухфазного коротких замыканий на землю не превышал установленные пределы. Для защиты изоляции трансформаторов от пробоя при возникновении перенапряжения в период работы с заземлённой нейтралью предусмотрены разрядники FV2, FV3 в нейтрали. Кроме того, разрядники устанавливают на вводе ВН трансформаторов во всех трёх фазах для защиты от набегающих по линиям волн перенапряжений (на схеме FV1, FV4).
    Трансформаторы ГПП подключают к сборным шинам вторичного напряжения 6 (10) кВ через масляные выключатели QF1 и QF2 и разъединители QS7 и QS8. Если требуется ограничение тока короткого замыкания в сети предприятия напряжением 6 (10) кВ, то между выключателями и разъединителями ввода включают трёхфазные бетонные реакторы LR1, LR2.

    На рис. 2 показаны схемы подключения вводов трансформаторов ГПП к сборным шинам распределительного устройства напряжением 6 (10) кВ. Схему а применяют при установке трансформаторов мощностью до 25 MB•А. При большей мощности трансформаторов обычно требуются мероприятия по ограничению токов короткого замыкания. При мощности трансформатора 40 MB•А применяют схемы бив, при мощности 63 MB•А рекомендуются схемы гид. Если же мощность трансформатора достигает 80 MB•А, то применяют схемы е, ж, з.

    К вводам подключаются трансформаторы собственных нужд подстанции для обеспечения питания приёмников собственного расхода, в том числе приводов масляных выключателей, независимо от состояния сборных шин напряжением 6 (10) кВ ГПП.

    Сборные шины напряжением 6 (10) кВ распределительных устройств ГПП секционируют выключателем. Благодаря этому при повреждении или ремонте сборных шин отключается только одна секция и все основные электроприёмники получают питание от другой секции. При внезапном исчезновении напряжения на одной секции, например при отключении питающей линии, с помощью устройств АВР включается секционный выключатель, обеспечивая питание секции. Секционный выключатель выбирают по нагрузке одной секции шин, а выключатель ввода трансформатора — по нагрузке двух секций в послеаварийном режиме ГПП. Для ограничения токов короткого замыкания секционный выключатель нормально отключен.

    Схема ГПП предприятия средней мощности, получающего электроэнергию по отпайкам от двух магистральных линий. В этом случае необходимы отделители QR1, QR2 для отключения поврежденного трансформатора ГПП от магистрали. Отключение отделителя происходит автоматически в период бестоковой паузы между моментом отключения головного выключателя магистрали после включения короткозамыкателя (QK1, QK2) и моментом повторного включения головного выключателя линии под действием устройств АГ1В.

    Трансформаторы мощностью 25 MB•А и более имеют расщепленную вторичную обмотку. Расщепление обмотки представляет собой эффективный способ ограничения токов короткого замыкания в электросети предприятия. Для этой же цели применяется групповое реактирование обычными и сдвоенными реакторами, включаемыми в цепь выводов трансформатора. Применявшееся ранее индивидуальное реактирование каждой отходящей линии не рекомендуется по соображениям компоновки и экономии оборудования.

     

    Секция III

    Рис. 2. Схема ГПП напряжением 35...220/6 (10) кВ с четырьмя секциями сборных шин напряжением 6 (10) кВ:

    ТСН1, ТСН2 — трансформаторы собственных нужд; TV1—TV4 — трансформаторы напряжения.
    В схеме, показанной на рис. 2, каждая вторичная обмотка обоих трансформаторов подключена к отдельной секции шин напряжением 6 (10) кВ. Все четыре секции одной системы сборных шин работают раздельно, но при выходе из работы одного трансформатора вся нагрузка автоматически переводится на другой включением секционных выключателей QB1 и QB2 под действием устройств А В Р. В распределительном устройстве данной подстанции установлены ячейки КРУ с масляными выключателями QF типа ВМП напряжением 6(10) кВ. Выкатные масляные выключатели имеют втычные контакты, поэтому нет необходимости в разъединителях. Конденсаторные батареи, измерительные трансформаторы напряжения предусматриваются на каждой секции шин, так как их режим регулируется самостоятельно и напряжения секций могут существенно различаться.

    Если передаваемая от одной секции мощность составляет 25 MB•А и более, а потребители расположены по одной трассе, то эффективно применение магистральной схемы питания с токопроводами. Шинные и гибкие токопроводы напряжением 6... 10 кВ выполняют одновременно роль сборных шин и распределительных линий.

    Рассмотренные примеры не отражают всего многообразия схем ГПП, применяемых на разных предприятиях. Так, для открытых подстанций напряжением 35 (110) кВ, не имеющих нагрузок первой категории, с трансформаторами мощностью до 6300 кВ•А применяются схемы с разъединителями и стреляющими предохранителями напряжением 35 (110) кВ на вводе ВН. При этом отпадает необходимость в выключателях или отделителях с короткозамыкателями на стороне первичного напряжения подстанции.

    При сооружении мощных ГПП на небольшом (несколько километров) расстоянии от районных подстанций или электростанций можно отказаться от установки каких-либо коммутационных аппаратов (за исключением разъединителей) на вводе напряжением 35...220 кВ к главным трансформаторам. Функции защиты и отключения трансформаторов, так же как и линий, передаются головному выключателю питающей ГПП линии. При срабатывании релейной защиты трансформатора ГПП отключающий импульс передается на головной выключатель линии по высокочастотным каналам или специально построенной для этого линии связи.

    Если подстанция сооружается в зоне повышенного загрязнения, то следует применять самые простые схемы коммутации с минимально возможным количеством аппаратуры и изоляции наружной установки. Рационально использование в таких условиях трансформаторов с кабельными вводами линии непосредственно в бак трансформатора. Тогда вообще отпадает необходимость в открытой изоляции. При этом защиту следует осуществлять с передачей отключающего импульса на головной выключатель линии. В отдельных случаях выгоднее строить закрытые распределительные устройства (ЗРУ) напряжением 35 (110) кВ. Открытые распределительные устройства (ОРУ) напряжением 35...220 кВ в условиях загрязнения делают с усиленной изоляцией. В ОРУ напряжением 35 кВ в загрязненной среде ставят изоляторы на напряжение 110 кВ, а в ОРУ напряжением 110 кВ — изоляторы напряжение 150...220 кВ. Не рекомендуется в зонах загрязнения применять комплектные распределительные устройства наружной установки (КРУН) напряжением 6 (10) кВ, так как они не обеспечивают достаточной защиты изоляции от загрязнения газами, аэрозолями, пылью.

    Согласно СН 174-75, при напряжении 110 кВ и выше в условиях нормальной окружающей среды применяют открытые под станции, а при напряжении 35 кВ — как открытые, так и закрытые. В условиях повышенного загрязнения, а также на Крайнем Севере рекомендуется применение ЗРУ напряжением 35...220 кВ с открытой установкой трансформаторов при усиленной изоляции вводов.

     

    Рис. 3. Конструктивная схема открытой понизительной подстанции напряжением 110/6 кВ:

    1 — линейный разъединитель; 2 — отделители; 3 — линейный портал; 4 — ошиновка; 5 — вентильные разрядники; 6 - трансформаторный портал; 7 — короткозамыкатели; 8 — заземляющий разъединитель нейтрали; 9 — молниеотвод

    На рис. 3 приведена конструктивная схема открытой подстанции напряжением 110/6 кВ без выключателей с применением короткозамыкателей и отделителей.

    В ОРУ напряжением 35...220 кВ все электрооборудование выбирается для наружной установки и монтируется по условиям безопасности обслуживания на высоте 2,5 м над уровнем земли. Выше располагаются сборные шины ОРУ. Третий ярус образуют переходы над сборными шинами и проводами отходящих линий. Поэтому на ОРУ требуется довольно много высоких стальных опор для сооружения порталов, молниеотводов и металлических конструкций для изготовления искусственного заземляющего устройства.

     

    Рис. 4. Общий вид однотрансформаторной подстанции типа 1КТГ1 110/6 (10) кВ с короткозамыкателем и отделителем:

    1 — ограждение; 2— разъединитель; 3 — отделитель; 4— разрядник; 5— молниеотвод; 6 — трансформаторный кронштейн; 7 — силовой трансформатор; 8 заземляющий разъединитель: 9 — шкафы КРУН

    Значительная экономия территории и материалов получается в случае применения блочных подстанций напряжением 35 (110) кВ типа КТПБ с ОРУ типа КРУБ.

    Разработаны закрытые подстанции без выключателей на стороне ВН и с закрытой установкой трансформаторов мощностью 2 х 25 и 2 х 40 М•ВА. На таких подстанциях предусмотрена вентиляция камер, шумоглушение.

    Главные понизительные подстанции следует располагать как можно ближе к центру нагрузки, насколько это позволяют планировка предприятия, подвод воздушных линий и состояние окружающей среды.

    На рис. 4 приведён общий вид однотрансформаторной подстанции типа 1КТП-110/6 (10) кВ с короткозамыкателем и отделителем на стороне ВН. Подстанция представляет собой ОРУ напряжением 110 кВ, комплектуемое короткозамыкателем, отделителем, разрядником, трансформаторами типов ТМН-2500/1 10, ТМН-6300/110, ТД-10000/110, ТД-16000/110, ТД-25000 и КРУН из шкафов серии К-33, К-34, К-38 с выключателями типа ВМП-10.

    Трансформаторные подстанции типа КТП-35/6 (10) кВ выполняют с одним или двумя трансформаторами. По типу аппарата, установленного на стороне ВН, различают подстанции со стреляющими предохранителями, с короткозамыкателями и отделителями, с масляными выключателями.

     

    Рис. 5. Общий вид (а) и план (б) передвижной подстанции напряжением 35/6 кВ в блочном исполнении:

    1 — блок высокочастотной телефонии; 2 — блок ввода напряжения 35 кВ; 3 — блок силового трансформатора; 4 — блок РУ напряжением 6 (10) кВ; 5 — блок- батарей статических конденсаторов

    Выпускаются и передвижные КТП напряжением 35/6 кВ мощностью 2x4000 кВ•А в блочном исполнении (рис. 5).

    Регулирование напряжения

    Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.

    Большинство силовых трансформаторов[1] оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

    Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

    Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора.

    Применение

    В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа витков обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так как
    {\displaystyle U_{2}=U_{1}{w_{2} \over w_{1}}}

    В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.

    Переключение без возбуждения

    Схема работы переключателя ответвлений

    Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформации в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторах средней и большой мощности с помощью четырёх ответвлений по 2,5 % на каждое[2].

    Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом, ввиду большего количества витков, отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, на стороне высшего напряжения величина силы тока меньше, и переключатель получается более компактным[3]. При этом надо заметить, что у понижающих трансформаторов (питание подводится со стороны обмотки высшего напряжения) регулирование напряжения будет сопровождаться изменением магнитного потока в магнитопроводе. В нормальном режиме это изменение незначительно.

    Регулирование напряжения переключением числа витков обмотки со стороны питания и со стороны нагрузки имеет разнохарактерный вид: при регулировании напряжения изменением числа витков на стороне нагрузки для повышения напряжения необходимо увеличить число витков (поскольку напряжение пропорционально числу витков), но при регулировании со стороны питания для повышения напряжения на нагрузке необходимо уменьшить число витков (это связано с тем, что напряжение сети уравновешивается ЭДС первичной обмотки, и для уменьшения последней необходимо уменьшить число витков).

    При переключении ответвлений обмотки с отключением трансформатора, переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки[3].


    1. Сопротивление элементов цепи при трех, двух и однофазных к.з.

    Коротким замыканием (КЗ) называется соединение между фазами, фазой и землей (нулевым проводом), непредусмотренные нормальными условиями работы сети.

    В большинстве случаев причиной возникновения КЗ в системе является нарушение изоляции электрического оборудования вследствие износа изоляции, не выявленного своевременно при профилактических испытаниях, или из-за перенапряжений. КЗ могут быть вызваны ошибочными действиями обслуживающего персонала, механическими повреждениями кабельных линий, схлестыванием, набросом на провода или перекрытием птицами проводов воздушных линий.

    Таблица 4.1

    Виды коротких замыканий

    Вид КЗ

    Поясняющая схема

    Условное обозначение

    Вероятность КЗ, %

    Трехфазное



    Ik(3)

    5

    Двухфазное



    Ik(2)

    10

    Однофазное



    Ik(1)

    65

    Двухфазное на землю



    Ik(1,1)

    20

    При возникновении КЗ общее сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

    Короткие замыкания в трехфазных сетях разделяют на трех-, двух-, однофазные и двухфазные на землю а системы токов и напряжений получачаются искаженными. Трехфазное КЗ является симметричным, поскольку при нем все три фазы оказываются в одинаковых условиях. Все остальные виды КЗ являются несимметричными, поскольку фазы оказываются в разных условиях, а системы токов и напряжений получачаются искаженными

    Относительная вероятность возникновения, условные обозначения вида КЗ и поясняющие схемы приведены в табл. 4.1

    Величина тока однофазного замыкания на землю зависит от режима работы нейтралей электрической сети (см. лабораторную работу № 4.1).

    Короткое замыкание сопровождается переходным процессом. Рассмотрим переходный процесс, возникающий при трехфазном КЗ в цепи, питающейся от источника бесконечной мощности.

    4.1 Трехфазное короткое замыкание в цепи питающейся от источника бесконечной мощности

    Источником бесконечной мощности называется такой источник, на зажимах которого в нормальном режиме и при КЗ сохраняется симметричная и неизменная по величине трехфазная система напряжений. Угол φ между током и напряжением каждой фазы определяется соотношением активных и индуктивных сопротивлений всей цепи, включая нагрузку.

    Короткое замыкание делит цепь на две части:

    -правую - с сопротивлениями r1 и х1=ωL1 в каждой фазе и

    -левую - содержащую источник питания и сопротивления цепи КЗ rк и хк=ωLк. Процессы обеих частей схемы при трехфазном КЗ протекают независимо.

    Правая часть рассматриваемой цепи оказывается зашунтированной коротким замыканием, и ток в ней будет поддерживаться до тех пор, пока запасенная в индуктивности L энергия магнитного поля не перейдет в тепло, выделяющееся в активном сопротивлении r1. Величина тока при активно–индуктивном характере сопротивление цепи не превысит тока нормального режима, который постепенно затухая до нуля, не представляет опасности для оборудования.



    Рис.4.1 Трехфазное КЗ в цепи, питающейся от источника бесконечной мощности

    Изменение режима в левой части цепи, содержащей источник питания, при наличии индуктивности Lк также сопровождается переходным процессом. Из курса ТОЭ уравнение этого процесса:



    (4.1)

    где i и U – мгновенное значение тока и напряжения рассматриваемой фазы.

    Решение этого уравнения даст выражение для мгновенного значения тока в любой момент времени t от начала КЗ.



    (4.2)

    где Um – амплитудное значение фазного напряжения источника;

    zk – полное сопротивление присоединенного к источнику участка цепи (цепи КЗ)

    a – фазовый угол напряжения источника в момент t=0;

    jk– угол сдвига тока в цепи КЗ относительно напряжения той же фазы;

    Та – постоянная времени цепи короткого замыкания,



    (4.3)

    Как видим из (4.2) полный ток КЗ слагается из двух составляющих: вынужденной, обусловленной действием напряжения источника (первый член в правой части уравнения), и свободной, обусловленной, изменением запаса энергии магнитного поля в индуктивности Lк (второй член).

    Вынужденная составляющая тока КЗ имеет периодический характер с частотой, равной частоте напряжения источника. Называют эту составляющую обычно периодическим током КЗ. Амплитуда периодической составляющей тока КЗ обозначается как Iпм и определяется отношением Um/zk:



    (4.4)

    Угол сдвига φк между векторами тока и напряжения определяется соотношением индуктивных и активных сопротивлений цепи КЗ.

    Для реальных цепей обычно xk>>rk и j k=45¸ 90°

    Свободная составляющая тока:



    (4.5)

    имеет апериодический характер изменения, на основании чего эту составляющую называют также апериодической составляющей тока КЗ.

    Начальное значение апериодической составляющей тока КЗ в каждой фазе определяется по выражению (2) для момента времени t=0:



    (4.6)

    Здесь i k0 – начальное значение тока КЗ, которое с учетом невозможности изменения тока в цепи с индуктивностью скачком равно

    i 0 – току предшествующего режима в данной фазе к моменту t=0. Значение периодической составляющей тока при t=0 определяется как:



    (4.7)

    Рассмотрим условия возникновения максимально возможного значения полного тока КЗ и его апериодической составляющей. Из (6) и (7) при Хк>>rк и φк » 900 следует, что максимальное значение тока iао будет в случае, если напряжение в момент возникновения КЗ проходит через нулевое значение (α=0) и тока в цепи до КЗ нет, т.е. i 0=0.

    При этом i n0=Inm. Кривая изменения тока при условии максимального значения апериодической составляющей тока выглядит следующим образом:

    Максимальная величина мгновенного значения тока наступает через 0,01 с после начала процесса КЗ. Она носит название ударного тока и обозначается iу.

    Величина ударного тока определяется выражением (2) для момента времени t=0.01 с

    i

    (4.8)

    или

    i   ,

    (4.9)

    где kу – ударный коэффициент, зависящий от постоянной времени цепи КЗ:



    (4.10)

    Переходный процесс при питании цепи от источника бесконечной мощности завершается после затухания апериодической составляющей тока, и далее полный ток КЗ равен его периодической составляющей, неизменной по амплитуде.

    Действующее значение тока для произвольного момента времени КЗ равно:

    периодической составляющей

    ;

    (4.11)

    апериодической составляющей

    ;

    (4.12)

    полного тока КЗ

    .

    (4.13)






    Рис. 4.2 Изменение тока трехфазного короткого замыкания и его составляющих для случая возникновения максимального значения апериодичесой составляющей


    Список литературы

    1. Алиев, И. Электрические машины: Учебное пособие для студ. Вузов / И. Алиев. - М.: РадиоСофт, 2011. - 448 c.
    2. Алиев, И.И. Электрические машины / И.И. Алиев. - М.: Радио и связь, 2012. - 448 c.
    3. Алиев, И.И. Электрические машины / И.И. Алиев. - Вологда: Инфра-Инженерия, 2014. - 448 c.
    4. Антонов, Ю.Ф. Сверхпроводниковые топологические электрические машины / Ю.Ф. Антонов, Я.Б. Данилевич. - М.: Физматлит, 2009. - 368 c.
    5. Баклин, В.С. Электрические машины. расчет двухполюсных турбогенераторов. практикум.: Учебное пособие для прикладного бакалавриата / В.С. Баклин. - Люберцы: Юрайт, 2016. - 137 c.
    6. Беспалов, В.Я. Электрические машины: Учебник для студентов учреждений высшего профессионального образования / В.Я. Беспалов, Н.Ф. Котеленец.. - М.: ИЦ Академия, 2013. - 320 c.
    7. Битюцкий, И.Б. Электрические машины. Двигатель постоянного тока. Курсовое проектирование: Учебное пособие / И.Б. Битюцкий, И.В. Музылева. - СПб.: Лань, 2018. - 184 c.
    8. Брускин, А.Э. Электрические машины и микромашины: Учебник / А.Э. Брускин, А.Е. Зохорович, В.С. Хвостов. - М.: Альянс, 2016. - 528 c.
    9. Брускин, Д.Э. Электрические машины Ч.2. / Д.Э. Брускин, А.Е. Зорохович, В.С. Хвост. - М.: Альянс, 2016. - 304 c.
    10. Брускин, Д.Э. Электрические машины Ч.1. / Д.Э. Брускин, А.Е. Зорохович, В.С. Хвост. - М.: Альянс, 2016. - 319 c.


    написать администратору сайта