Главная страница
Навигация по странице:

  • 3.1 Классификация методов рекультивации почв, загрязненных нефтью и нефтепродуктами

  • 3.2 Основные подходы и роль биоремедиации в восстановлении нефтезагрязненных почв

  • 3.3 Микроорганизмы-деструкторы нефти и нефтепродуктов

  • 3.4 Трансформация нефти в почве микробиологическим препаратом и дождевыми червями

  • 3.5 Методы рекультивации, основанные на интенсификации процессов самоочищения

  • Современные технологии рекультивации почвы в местах добычи и разлива нефти. Современные технологии рекультивации почвы в местах добычи и раз. Реферат по дисциплине Методы предотвращения и ликвидации последствий аварий и катастроф (название дисциплины) на тему Современные технологии рекультивации почвы в местах добычи и разлива нефти


    Скачать 121.4 Kb.
    НазваниеРеферат по дисциплине Методы предотвращения и ликвидации последствий аварий и катастроф (название дисциплины) на тему Современные технологии рекультивации почвы в местах добычи и разлива нефти
    АнкорСовременные технологии рекультивации почвы в местах добычи и разлива нефти
    Дата06.03.2023
    Размер121.4 Kb.
    Формат файлаdocx
    Имя файлаСовременные технологии рекультивации почвы в местах добычи и раз.docx
    ТипРеферат
    #971131
    страница3 из 4
    1   2   3   4

    3. Методы восстановления нефтезагрязненных почвенных экосистем
    Нефтяное загрязнение отличается от многих других антропогенных воздействий тем, что оно дает не постепенную, а, как правило, «залповую» нагрузку на среду, вызывая быструю ответную реакцию. При оценке последствий такого загрязнения не всегда можно сказать, вернется ли экосистема к устойчивому состоянию или будет необратимо деградировать. Во всех мероприятиях, связанных с ликвидацией последствий загрязнения, с восстановлением нарушенных земель, необходимо исходить из главного принципа: не нанести экосистеме больший вред, чем тот, который уже нанесен при загрязнении. Суть восстановления загрязненных экосистем – максимальная мобилизация внутренних ресурсов экосистемы на восстановление своих первоначальных функций. Самовосстановление и рекультивация представляют собой неразрывный биогеохимический процесс.

    Естественное самоочищение природных объектов от нефтяного загрязнения - длительный процесс, особенно в условиях Сибири, где долгое время сохраняется пониженный температурный режим. В связи с этим, разработка способов очистки почвы от загрязнения углеводородами нефти – одна из важнейших задач при решении проблемы снижения антропогенного воздействия на окружающую среду.
    3.1 Классификация методов рекультивации почв, загрязненных нефтью и нефтепродуктами
    Рекультивация земель – это комплекс мероприятий, направленных на восстановление продуктивности и хозяйственной ценности нарушенных и загрязненных земель. Задача рекультивации – снизить содержание нефтепродуктов и находящихся с ними других токсичных веществ до безопасного уровня, восстановить продуктивность земель, утерянную в результате загрязнения (Реймерс, 1990).В настоящее время разработан ряд методов ликвидации нефтяных загрязнений почвы, включающие механические, физико-химические, биологические методы (таблица 3.1).
    Таблица 3.1 - Методы ликвидации нефтяных загрязнений почвы (Колесниченко, 2004).

    Методы

    Способы ликвидации

    Особенности применения

    Механические

    Обвалка загрязнения, откачка нефти в ёмкости

    Первичные мероприятия при крупных разливах при наличии соответствующей техники и резервуаров (проблема очистки почвы при просачивании нефти в грунт не решается)

    Замена почвы

    Вывоз почвы на свалку для естественного разложения

    Физико-химические

    Сжигание

    Экстренная мера при угрозе прорыва нефти в водные источники. В зависимости от типа нефти и нефтепродукта уничтожается от 50 до 70%разлива, остальная часть просачивается в почву. Из-за недостаточно высокой температуры в атмосферу попадают продукты возгонки и неполного окисления нефти; землю после сжигания необходимо вывозить на свалку

    Предотвращение возгорания

    При разливе легковоспламеняющихся продуктов в цехах, жилых кварталах, на автомагистралях, где возгорание опаснее загрязнения почвы; изолируют разлив сверху противопожарными пенами или засыпают сорбентами

    Промывка почвы

    Проводится в промывных барабанах с применением ПАВ, промывные воды отстаиваются в гидроизолированных прудах или ёмкостях, где впоследствии проводятся их разделение и очистка

    Дренирование почвы

    Разновидность промывки почвы на месте с помощью дренажных систем; может сочетаться с использованием нефтеразлагающих бактерий

    Экстракция растворителями

    Обычно проводится в промывных барабанах летучими растворителями с последующей отгонкой их остатков паром

    Сорбция

    Разливы на сравнительно твёрдой поверхности (асфальт, бетон, утрамбованный грунт) засыпают сорбентами для поглощения нефтепродукта и снижения пожароопасности при разливе легковоспламеняющихся продуктов

    Термическая десорбция

    Проводится редко при наличии соответствующего оборудования, позволяет получать полезные продукты вплоть до мазутных фракций

    Биологические

    Биоремедиация

    Применяют нефтеразрушающие микроорганизмы. Необходима запашка культуры в почву. Периодические подкормки растворами удобрений, ограничение по глубине обработки, температуре почвы (выше 15ºС), процесс занимает 2-3 сезона

    Фиторемедиация

    Устранение остатков нефти путём высева нефтестойких трав (клевер ползучий, щавель, осока и др.), активизирующих почвенную микрофлору, является окончательной стадией рекультивации загрязнённых почв


    До недавнего времени наиболее распространенным и дешевым методом ликвидации нефтяного загрязнения было простое сжигание. Этот способ неэффективен и вреден по двум причинам: 1) сжигание возможно, если нефть лежит на поверхности густым слоем или собрана в накопители, пропитанные ею почва или грунт гореть не будут; 2) на месте сожженных нефтепродуктов продуктивность почв, как правило, не восстанавливается, а среди продуктов сгорания, остающихся на месте или рассеянных в окружающей среде, появляется много токсичных, в частности канцерогенных веществ (Гриценко, Акопова, 1997).

    Очистка почв и грунтов в специальных установках путем пиролиза или экстракции паром дорогостояща и малоэффективна для больших объемов грунта. Требуются большие земляные работы, в результате чего нарушается естественный ландшафт, а после термической обработки в очищенной почве могут остаться новообразованные полициклические ароматические углеводороды – источник канцерогенной опасности (Пиковский, 1993).

    Землевание замедляет процессы разложения нефтяных углеводородов, приводит к образованию внутрипочвенных потоков нефти, пластовой жидкости и загрязнению грунтовых вод. Складирование загрязненной почвы создает очаги вторичного загрязнения.

    Качественное удаление нефтяных загрязнителей при высоких уровнях загрязнения зачастую не обходится без применения различного рода сорбентов. Среди возможного сырья для производства сорбентов наиболее привлекательными являются естественное органическое сырье и отходы производства растительного происхождения. К такому сырью относятся торф, сапропели, отходы переработки сельскохозяйственных культур и др. На базе такого сырья разработаны, например, такие сорбенты, как «Сорбест», «РС», «Лессорб» и др. (Колесниченко, 2004).

    Существует технология очистки почв и грунтовых вод путем промывания их поверхностно-активными веществами. Этим способом можно удалить до 86% нефти и нефтепродуктов. Применять его в широких масштабах вряд ли целесообразно, так как поверхностно-активные вещества сами загрязняют среду и появится проблема их сбора и утилизации (Пиковский, 1993).
    3.2 Основные подходы и роль биоремедиации в восстановлении нефтезагрязненных почв
    Существующие механические, термические и физико-химические методы очистки почв от нефтяных загрязнений дорогостоящи и эффективны только при определенном уровне загрязнения (как правило, не менее 1% нефти в почве), часто связаны с дополнительным внесением загрязнения и не обеспечивают полноты очистки. В настоящее время наиболее перспективным методом для очистки нефтезагрязненных почв, как в экономическом, так и в экологическом плане является биотехнологический подход, основанный на использовании различных групп микроорганизмов, отличающихся повышенной способностью к биодеградации компонентов нефтей и нефтепродуктов (Логинов и др., 2000). Способность утилизировать трудно разлагаемые вещества антропогенного происхождения (ксенобиотики) обнаружена у многих организмов. Это свойство обеспечивается наличием у микроорганизмов специфических ферментных систем, осуществляющих катаболизм таких соединений. Поскольку микроорганизмы имеют сравнительно высокий потенциал разрушения ксенобиотиков, проявляют способность к быстрой метаболической перестройке и обмену генетическим материалом, им придается большое значение при разработке путей биоремедиации загрязненных объектов.

    Под термином «биоремедиация» принято понимать применение технологий и устройств, предназначенных для биологической очистке почв, т.е. для удаления из почвы уже находящихся в ней загрязнителей (Биология. Большой энциклопедический…,1999). Биоремедиация включает в себя два основных подхода:

    1 биостимуляция – активизация деградирующей способности аборигенной микрофлоры внесением биогенных элементов, кислорода, различных субстратов;

    2 биодополнение – интродукция природных и генноинженерных штаммов-деструкторов чужеродных соединений.

    Биостимуляция insiti (биостимуляция в месте загрязнения). Этот подход основан на стимулировании роста природных микроорганизмов, обитающих в загрязненной почве и потенциально способных утилизировать загрязнитель, но не способных делать это эффективно из-за недостатка основных биогенных элементов (соединений азота, фосфора, калия и др.) или неблагоприятных физико-химических условий. В этом случае в ходе лабораторных испытаний с использованием образцов загрязненной почвы устанавливают, какие именно компоненты и в каких количествах следует внести в загрязненный объект, чтобы стимулировать рост микроорганизмов, способных утилизировать загрязнитель (Логинов и др., 2000).

    Биостимуляция invitro. Отличие этого подхода в том, что биостимуляция образцов естественной микрофлоры загрязненной почвы проводится сначала в лабораторных или промышленных условиях (в биореакторах или ферментерах). При этом обеспечивается преимущественный и избирательный рост тех микроорганизмов, которые способны наиболее эффективно утилизировать данный загрязнитель. «Активизированную» микрофлору вносят в загрязненный объект одновременно с необходимыми добавками, повышающими эффективность утилизации загрязнителя (Логинов и др., 2000).

    Существующие два пути интенсификации биодеградации ксенобиотиков в окружающей среде – стимуляция естественной микрофлоры и интродукция активных штаммов, не только не противоречат, но и дополняют друг – друга (Коронелли, 1996).

    Биорекультивация нефтезагрязненных почв – это многостадийный биотехнологический процесс, включающий физико-химические методы детоксикации загрязнителя, применение органических и минеральных добавок, использование биопрепаратов (Вельков,1995).

    Основными факторами, влияющими на ход биоразрушения органических загрязнителей, являются их химическая природа (которая обусловливает возможные пути биотрансформации), концентрация и взаимодействие с другими загрязнителями (на уровне их непосредственного взаимодействия или взаимного влияния на трансформацию).

    К неблагоприятным физико-химическим условиям, лимитирующим деградацию микроорганизмами ксенобиотиков в окружающей среде, можно отнести низкую или чрезмерную влажность почвы, недостаточное содержание кислорода, неблагоприятную температуру и рH, низкую концентрацию или доступность ксенобиотиков, наличие альтернативных, более предпочтительных субстратов и т.д.. Среди биологических факторов отмечены поедание интродуцируемых микроорганизмов простейшими, обмен генетической информацией в популяции, физиологическое состояние и плотность интродуцируемой микробной популяции (Providenti, 1993). Некоторые из перечисленных проблем могут быть решены путем создания генетически сконструированных штаммов-деструкторов и их консорциумов, усовершенствования методов интродукции, оптимизации условий существования природных микробных популяций.

    Таким образом, интродукция микроорганизмов приводит к положительным результатам только при создании соответствующих условий для развития внесенной популяции, для чего необходимо знать физиологические особенности интродуцента, а также учитывать складывающиеся микробные взаимодействия.
    3.3 Микроорганизмы-деструкторы нефти и нефтепродуктов
    Способность усваивать углеводороды нефти присуща микроорганизмам, представленным различными систематическими группами. К ним относятся различные виды микромицетов, дрожжей и бактерий. Наиболее активные деструкторы нефти встречаются среди бактерий. Они характеризуются способностью к усвоению широкого спектра углеводородов, включая и ароматические, обладают высокой скоростью роста и, следовательно, представляют большой практический интерес.

    Углеводородокисляющая группа микроорганизмов природного происхождения таксономически очень разнообразна. Наиболее активные бактериальные штаммы относятся к родам: Pseudomonas, Arthrobacter, Rhodococcus, Acinetobacter, Flavobacterium, Corynebacterium, Xanthomonas, Alcaligenes, Nocardia, Brevibacterium, Mycobacterium, Beijerinkia, Bacillus, Enterobacteriaceae, Klebsiella, Micrococcus, Sphaerotilus. Среди актиномицетов внимание привлекает многочисленный род Streptomyces. Из дрожжей выделяют род Candida и Torulopsis (Сидоров и др., 1997).

    Постоянными и доминирующими компонентами естественных биоценозов нефтяных загрязнений являются родококки, их основная экологическая функция – аккумуляция газообразных н-алканов, жидких углеводородов нефти и трансформация их в биомассу. Бактерии этого рода отличаются высокой жизнестойкостью при действии неблагоприятных факторов – низкой температуры, солнечного ультрафиолета, длительного отсутствия питательных веществ. Естественная нефтеокисляющая микрофлора нефтезагрязненной тундровой почвы представлена главным образом бактериями R. Erythropolis. В связи с этим понятен интерес к родококкам – деструкторам нефти (Коронелли, 1996).

    Т. В. Коронелли с соавт. с целью выбора штамма, сохраняющего в наибольшей степени углеводородокисляющую активность при низких температурах, провели скрининг всей коллекции углеводородокисляющих бактерий (роды Pseudomonas, Arthrobacter, Rhodococcus) в агаризованной среде с парафином при температуре плюс 6°С. Отобранные таким образом 17 штаммов выращивали в жидкой среде с нефтью при плюс 8°С. Через 14 суток определяли концентрацию нефтяных углеводородов методом ИК-спектроскопии. Оказалось, что 12 штаммов использовали от 13 до 36% внесенной нефти, два штамма – 5-6%, а три были неэффективными. Все 12 штаммов являлись представителями рода Rhodococcus: 11 принадлежали к виду R. Erythropolis; один – к виду R. Maris (Коронелли, 1996).

    Немалый интерес представляют спорообразующие бактерии, так как они наиболее устойчивы к различным неблагоприятным воздействиям окружающей среды.

    В настоящее время активно ведётся поиск микроорганизмов, разрушающих нефть, в особенности при низких температурах. Активные формы микроорганизмов выделяются из разнообразных водных и почвенных экосистем, особенно загрязнённых углеводородами или нефтью, а также из микрофлоры нефти и пластовых вод нефтяных месторождений.

    Выбор активного микроорганизма-деструктора углеводородных загрязнений должен производиться с учетом ряда требований. При поиске микроорганизма-деструктора необходимо учитывать, что вносимая в почву микробная биомасса не должна быть чужеродной для почвенной микрофлоры. Еще одним важным требованием к вносимым в почву микроорганизмам является их непатогенность. В связи с тем, что технология микробиологической очистки загрязненных почв предусматривает аэробные условия, необходимо вести выбор микроорганизма-деструктора среди аэробных и факультативно-анаэробных микроорганизмов. Микробные клетки могут подвергаться воздействию неблагоприятных факторов окружающей среды, следовательно, микроорганизм-деструктор должен обладать высокой жизнестойкостью.

    В настоящее время предложено большое количество различных коммерческих микробиологических препаратов как отечественного, так и импортного производства. Ряд из них нашел широкое применение на практике (Деворойл, Дестройл, Путидойл и т.п.)

    Институтом Микробиологии АН России совместно с Научно – производственным предприятием «Биотехинвест» разработан микробиологический препарат «Деворойл». Препарат предназначен для биодеградации нефти и нефтепродуктов при загрязнении почв, водоемов, поверхностей акваторий, а также внутренних поверхностей танков нефтеналивных судов и прочих резервуаров.

    Микробиологический препарат «Деворойл» состоит из тщательно подобранного сообщества углеводородоокисляющих бактерий и дрожжей. В состав ассоциации входят вегетативные клетки непатогенных штаммов культур родов Rhodococcus, Pseudomonas и Yarovvia. Бактерии способны окислять нефтяныеn – алканы длиной цепи С9 – С30 и ароматические углеводороды. Удачно подобранная ассоциация микроорганизмов дает препарату множество принципиальных преимуществ.

    Также для ликвидации нефтяных загрязнений почвы используется препарат «Дестройл». Коммерческий препарат, выпускаемый Бердским заводом биологических препаратов, полученный на основе, выделенной из природы микробной культуры Acinetobacter sp. Обладает высоко выраженной активностью в отношении углеводородов нефти и нефтепродуктов, вызывая в них глубокие необратимые процессы деградации до остаточных продуктов, относящихся к экологически нейтральным соединениям.
    3.4 Трансформация нефти в почве микробиологическим препаратом и дождевыми червями
    Ученые Иркутского Государственного Университета (Стом, Матвеева и др., 2006) проводили исследования. В лабораторных условиях изучали влияние дождевых червей и нефтеразрушающего микробиологического препарата, а также их бинарной смеси на образцы нефтезагрязненной почвы. Трансформация нефтяного загрязнения, снижение фитотоксичности исследуемых образцов и рекультивация почвы наиболее эффективно происходит под действием комплекса биодеструкторов.

    Было предложено для элиминирования нефтегенного загрязнения совместное применение нефтеразрушающих микробиологических препаратов и дождевых червей. При использовании такого подхода предполагалось увеличение скорости и степени биотрансформации нефтепродуктов, восстановление структуры почвы, устранение необходимости дополнительной аэрации и повторного внесения препарата.

    Источником микроорганизмов служил микробиологический препарат "Дестройл", рекомендованный для очистки почвы от нефти и нефтепродуктов. В качестве дождевых червей использовали красный калифорнийский гибрид дождевого червя Eisenia foetida.

    Эксперименты проводили в садках размером 180 мм - 120 мм - 60 мм, помещая туда образцы нефтезагрязненной почвы (толщина слоя 50мм). В работе использовали дерново-подзолистую почву, в которую добавляли нефть Марковского месторождения Иркутской области (из расчета 25 г нефти на 1 кг почвы). В один из опытных садков вносили микробиологический препарат "Дестройл" (0,5 г на 100 г нефтезагрязненной почвы), в другой - дождевых червей, а в третий - добавляли "Дестройл" совместно с дождевыми червями. Червей брали одинаковоговозраста длиной 60-70 мм по пять особей. Контролем служила нефтезагрязненная почва, в которую не добавляли ни червей, ни «Дестройл».

    Количественное содержание нефти, экстрагированной хлороформом (Агранович, 1979), в процессе опыта определяли на спектрофотометре СФ - 46, при  = 286 нм (Куркова, Бриль, 1990).

    Определение скорости вермитрансформации почвы червями вели по оригинальной методике (Стом и др., патент №96114221). В основе этого метода лежит регистрация толщины слоя копролитов накапливающихся на поверхности субстрата. Оценку фитотоксичности водных вытяжек из почв осуществляли по пробе на прорастание семян редиса (Stom, 1982). Подсчитывали число проросших семян и измеряли длину проростков. Каждый опыт проводили не менее чем с тремя параллелями и в 5 биологических повторностях.

    Как видно из рисунка 3.1 добавление в почву червей, а еще в большей степени микробиологического препарата существенно активизировало процессы элиминирования нефти в исследуемых образцах. По мере увеличения продолжительности экспериментов наблюдали все более значительное снижение содержания нефти при совместном действии красного калифорнийского гибрида и препарата "Дестройл" по сравнению с действием биодеструкторов порознь. Особенно наглядно это проявлялось в сорокасуточных экспериментах, когда наблюдалось заметное снижение влияния отдельно внесенных дождевых червей и микробиологического препарата.

    В вариантах с добавлением червей отмечалось повышение структурированности почвы, ее скважности. Это, без сомнения, должно повышать аэрацию и улучшать водный режим почвы (Орлов, 1978), тем самым, способствуя физико-химическим и микробиологическим процессам разрушения нефти.
    Рисунок 3.1 – Влияние различных биодеструкторов на содержание нефти в почве
    Улучшение процессов разрушения нефти, а также интенсификация переработки нефтезагрязненных почв при добавлении наряду с препаратом "Дестройл" дождевых червей, подтверждается и увеличением толщины слоя копролитов (рисунок 3.2) - комочков земли пропущенных через кишечник червя. Через три недели, толщина слоя копролитов в опытах, где в почву добавляли нефть (25 г/кг) составила, в варианте с червями – 3 мм, а там, где кроме червей добавляли и микробиологический препарат – 9 мм.
    Рисунок 3.2 – Толщина слоя копролитов на поверхности нефтезагрязненных субстратов


    О том, что при действии комплекса биодеструкторов происходило значительно более интенсивное обезвреживание нефти, свидетельствовали и данные, полученные при тестировании на семенах редиса.

    Из таблицы 3.2 можно увидеть, что при совместном влиянии микробиологического препарата и красного калифорнийского гибрида, происходило значительно более эффективное снижение фитотоксичности водных вытяжек из почвы, в которую добавляли нефть, чем в тех случаях, когда компоненты действовали порознь.

    Таблица 3.2 – Влияние биодеструкторов на фитотоксичность водных вытяжек из почвы, загрязненной нефтью

    Время экспозиции, сут

    Влияние биодеструкторов на фитотоксичность водной вытяжки нефтезагрязненной почвы

    Биодеструкторы

    Дождевые черви

    Микробиологический препарат

    Препарат и дождевые черви

    10

    кол-во проросших семян

    средняя длина проростков

    0

    0

    0

    0

    0

    0

    20

    кол-во проросших семян средняя длина проростков

    0

    0

    0

    0

    20,4

    16,5

    30

    кол-во проросших семян

    средняя длина проростков

    3,5

    11,0

    17,0

    33,0

    68,0

    60,5

    40

    кол-во проросших семян

    средняя длина проростков

    6,8

    11,0

    17,0

    49,5

    81,6

    88,0


    Примечание: Контроль: водная вытяжка почвы, в которую не вносили нефть; кол-во проросших семян - 29;средняя длинапроростков, мм - 57; исходная концентрация нефти в 1 кг почвы – 25 г.

    Через 30 суток от начала эксперимента в вариантах с водными вытяжками, из нефтезагрязненных почв, в которые запускали красных калифорнийских червей, прорастало всего 3,5 % семян, там где был добавлен «Дестройл» - 17%, а там где присутствовали и черви и микробиологический препарат – 68 %. Длина проростков редиса через 30 суток составила соответственно 11,0, 33,0 и 60,5 мм.

    Таким образом, проведенные исследования показали, что комплекс биодеструкторов, состоящий из представителей двух трофических уровней - ассоциаций нефтеразрушающих микроорганизмов - "Дестройл" и дождевых червей, более эффективно элиминировал нефть из нефтезагрязненных почв, снижал фито токсичность образцов, и вел к рекультивации почв, чем названные биодеструкторы это делали по отдельности.

    Эта работа продолжается и дальше, рассматривается химическая сторона.

    3.5 Методы рекультивации, основанные на интенсификации процессов самоочищения
    Самоочищение и самовосстановление почвенных экосистем, загрязненных нефтью и нефтепродуктами, - это стадийный биогеохимический процесс трансформации загрязняющих веществ, сопряженный со стадийным процессом восстановления биоценоза. Для разных природных зон длительность отдельных стадий этих процессов различна, что связано в основном с почвенно-климатическими условиями. Важную роль играют и состав нефти, наличие сопутствующих солей, начальная концентрация загрязняющих веществ (Исмаилов и др., 1998).

    Механизм самовосстановления экосистемы после нефтяного загрязнения достаточно сложен. С помощью агротехнических приемов можно ускорить процесс самоочищения нефтезагрязненных почв путем создания оптимальных условий для проявления потенциальной активности микроорганизмов, входящих в состав естественного микробиоценоза.

    Одним из основных факторов, лимитирующих процесс разложения углеводородов, является газовоздушный режим загрязненной почвы. Нефтяное загрязнение ухудшает газовый обмен почвы, создает условия для усиления восстановительных процессов. Для окисления углеводородов микроорганизмами необходимо наличие молекулярного кислорода, в анаэробных условиях процесс окисления крайне затруднен.

    Из свыше 100 видов бактерий, грибов, дрожжей, способных утилизировать один или несколько нефтяных углеводородов в качестве источника углерода и энергии, только один принадлежал к анаэробам (Колесниченко, 2004). Приемы обработки почв, способствующие улучшению аэрации, стимулируют активность микроорганизмов, усиливают окислительные процессы. Интенсификация разложения нефти и нефтепродуктов в почве возможна путем рыхления, частой вспашки, дискования.

    Обработка является мощным регулирующим фактором, стимулирующим самоочистку нефтезагрязненных почв. Она положительно влияет на микробиологическую и ферментативную активность, так как способствует улучшению условий жизнедеятельности аэробных микроорганизмов, которые количественно и по интенсивности метаболизма доминируют в почвах и являются основными деструкторами углеводородов. Рыхление загрязненных почв увеличивает диффузию кислорода в почвенные агрегаты, снижает концентрацию углеводородов в почве в результате улетучивания легких фракций, обеспечивает разрыв поверхностных пор, насыщенных нефтью, но в то же время способствует равномерному распределению компонентов нефти и нефтепродуктов в почве и увеличению активной поверхности. Обработка почвы создает мощный биологически активный слой с улучшенными агрофизическими свойствами. В почве при этом создается оптимальный водный, газовоздушный и тепловой режим, растет численность микроорганизмов и их активность, усиливается активность почвенных ферментов, увеличивается энергия биохимических процессов (Колесниченко, 2004).

    Обеспеченность почв биогенными элементами - азотом, фосфором и калием - важный фактор, определяющий интенсивность разложения нефти и нефтепродуктов. Недостаток биогенных элементов необходимо восполнять путем внесения в почву минеральных удобрений. Практически во всех случаях внесение биогенных элементов в виде минеральных удобрений стимулирует разложение углеводородов в почве. Наиболее интенсивно разложение углеводородов протекает при ежегодном внесении комплекса N, P, K – содержащих удобрений в сочетании с навозом, а также при внесении в почву биогумуса (Андерсон и др., 1979).

    Биогумус получают переработкой навоза (крупного рогатого скота, свиного, конского), опилок, измельченной вермикультурой соломы. Биогумус поддерживает высокую численность бактерий, утилизирующих органические и минеральные формы азота, целлюлозоразрушающих микроорганизмов, нитрификатов. Способствует перестройке микробного ценоза нефтезагрязненной почвы, что проявляется в расширении видового разнообразия бактериальной флоры. Почвенная микрофлора использует компоненты биогумуса в качестве источника азота, фосфора и калия, обеспеченность которыми в нефтезагрязненной почве снижается. Многие органические вещества биогумуса служат энергетическим материалом для почвенной микрофлоры, благодаря чему в почве повышается активность микробиологических процессов, соответственно усиливается мобилизация питательных веществ (Логинов, 2000).

    Температура - важный фактор, при прочих равных условиях определяющий интенсивность микробиологического разложения нефти и нефтепродуктов. Оптимальной температурой для разложения нефти и нефтепродуктов в почве считается 20-37°С. В почвах, расположенных в аридных зонах с повышенной среднегодовой температурой, интенсивность самоочищения загрязненных почв значительно выше, чем в почвах, расположенных в гумидных зонах с относительно низкими среднегодовыми температурами.

    В виду сильного влияния температуры на скорость биодеградации нефтепродуктов особое внимание исследователей в последнее время привлекают природные микроорганизмы, обладающие высокой устойчивостью к низким температурам. В частности, из загрязненных нефтепродуктами почв Антарктики был выделен штамм Pseudomonassp. 30-3, способный переносить диапазон температур от 0 до 35 °С (Panickeretal., 2002).

    Поддержание почвы во влажном состоянии является одним из агротехнических приемов управления биологической активностью и оказывает эффективное воздействие на темпы разложения нефти и нефтепродуктов. Благоприятный водный режим почвы достигается путем полива. Улучшение водного режима путем полива обусловливает улучшение агрохимических свойств почв, в частности влияет на подвижность питательных веществ, микробиологическую деятельность и активность биологических процессов. Одновременно с этим усиливается действие на микробиологическую и ферментативную активность агрохимических приемов, например внесения удобрений, рыхления.

    Кислотность почвы играет важную роль в разложении нефти и нефтепродуктов. Значения рН, близкие к нейтральным, являются оптимальными для роста на углеводородах большинства бактериальных микроорганизмов. В подзолистых почвах с кислой реакцией этот фактор имеет решающее значение при разложении нефти и нефтепродуктов. Поэтому для создания рН, оптимального для их биоразложения, кислые почвы подвергают известкованию (Колесниченко, 2004).

    Посев на нефтезагрязненную почву люцерны и других бобовых культур, трав с разветвленной корневой системой способствует ускорению разложения углеводородов (Алиев и др., 1977). Положительное воздействие посевов сельскохозяйственных растений, и в частности многолетних трав, объясняется тем, что своей развитой корневой системой они способствуют улучшению газовоздушного режима загрязненной почвы, обогащают почву азотом и биологически активными соединениями, выделяемыми корневой системой в почву в процессе жизнедеятельности растений. Все это стимулирует рост микроорганизмов и соответственно интенсифицирует разложение нефти и нефтепродуктов.
    1   2   3   4


    написать администратору сайта