Главная страница
Навигация по странице:

  • ЭТАЛОН КЕЛЬВИНА Содержание

  • Таблица1. Электрические свойства полимеров и пластмасс.

  • Технология изготовления

  • Область применения

  • метрология. Реферат по дисциплине Метрология, стандартизация и сертификация


    Скачать 83.11 Kb.
    НазваниеРеферат по дисциплине Метрология, стандартизация и сертификация
    Дата27.02.2023
    Размер83.11 Kb.
    Формат файлаdocx
    Имя файламетрология.docx
    ТипРеферат
    #958182


    Реферат по дисциплине

    «Метрология, стандартизация и сертификация»
    ЭТАЛОН КЕЛЬВИНА

    Содержание

    Содержание………………………………………………………………….2


    Современное представление о строении материала 3

    Классификация Пластмасс 4

    Электрические свойства 7

    Технология изготовления 9

    Область применения 10

    Заключение 11

    Список литературы 12


    Современное представление о строении материала


    Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего вещества переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагреве, или при последующем охлаждении.

    Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используют синтетические смолы, реже применяют эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.

    Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим веществом получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механические свойства, снижают усадку при прессовании и придают материалу те или иные специфические свойства. Для повышения эластичности и облегчения обработки добавляют пластификаторы (олеиновую кислоту, стеарин, дибутилфталат и др.). Наконец, исходная композиция может содержать отвердители (амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители.

    Классификация Пластмасс


    По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние хрупки, часто дают большую усадку (до 10—15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.

    По композиционному составу различают два вида пластмасс; ненаполненные и наполненные. Ненаполненные пластмассы состоят только из полимера и некоторых специальных добавок. К ним относятся полиэтиленовая пленка, полистирольные изделия и др.Наполненные пластмассы содержат кроме полимера наполнители, стабилизаторы, пигменты. К наполненным пластмассам относятся различные виды линолеума и погонажные изделия из поливинилхлорида, бумажно-слоистые пластики и др.

    По виду наполнителя пластмассы делят на порошковые (карболиты) с наполнителями в виде древесной муки, графита, талька и др.; волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); газонаполненные (наполнитель — воздух или нейтральные газы — пено- и поропласты).

    В зависимости от физико-механических свойств при нормальной температуре, в основе которых лежит модуль упругости, пластмассы делят на жесткие, полужесткие, мягкие и эластичные. Жесткие пластмассы (предел прочности при сжатии при 50%-ной деформации более 0,15 Мпа) — твердые упругие материалы аморфной структуры. Характеризуются незначительным удлинением, хрупким разрушением при разрыве. Примерами жестких пластмасс служат фенопласты и аминопласты. Полужесткие пластмассы - твердые вязкоупругие материалы кристаллической структуры. Характеризуются высоким относительным удлинением при разрыве. К таким пластмассам относятся полипропиленовые трубы, полиамидные пластики. Мягкие пластмассы обладают высоким относительным удлинением при разрыве и низким модулем упругости. К ним относятся полиэтиленовая пленка, трубы, поливинилацетатные пленки. Эластичные пластмассы(предел прочности при сжатии при 50%-ной деформации менее 0,01 Мпа) — мягкие, гибкие материалы, характеризующиеся большими деформациями при растяжении. Примером эластичных пластмасс служат каучуковые резины.

    По назначению и отличительным признакам пластмассы бывают общего назначения, высокопрочные, антикоррозионные, прозрачные, морозо- и теплостойкие, электроизоляционные. Пластмассы общего назначения — материалы, к показателям физико-механических и химических свойств которых не предъявляют особых требований. К этим материалам относятся отделочные, декоративные, упаковочные, хозяйственно-бытовые и другие изделия из пластмасс (поливинилхлорида, полипропилена, фенопластов и др.). Высокопрочные пластмассы — полиформальдегид, полиэфирные пластики, поликарбонаты — характеризуются высоким пределом прочности при сжатии и изгибе, большой износостойкостью и высоким коэффициентом трения (фрикционные свойства). Эти материалы способны заменить бронзу и баббит, например, в подшипниках, втулках; их используют для изготовления труб, зубчатых колес, гребных винтов. Антикоррозионные пластмассы — каучуки, полиизобутилен, эпоксипласты — обладают высокой химической стойкостью к воде, кислотам, растворам солей и органическим растворителям. Эти материалы используют вместо металлических деталей в оборудовании и конструкциях, эксплуатирующихся в агрессивных средах, из них изготовляют контейнеры-цистерны жидкого топлива. Прозрачные пластмассы — полиметилметакрилат, полистирол — пропускают лучи света в широком диапазоне волн, и в частности ультрафиолетовую часть спектра, благодаря чему они не уступают по своим оптическим свойствам лучшим сортам стекла и хрусталя и значительно превосходят в этом силикатное стекло. Из таких пластмасс изготовляют оптические системы осветительной арматуры. Морозостойкие пластмассы — полиизобутилен, этилцеллюлоза, поликарбонат — сохраняют эластичные свойства и гибкость при низких (минусовых) температурах. Изделия и конструкции, изготовленные из таких пластмасс, можно эксплуатировать в атмосферных условиях. Теплостойкие пластмассы — полиорганосилоксаны, политрихлор-этилен, фенопласты — обладают способностью не размягчаться при повышении температуры. Такие пластмассы широко применяют в промышленности и быту, в отдельных случаях они заменяют металл и керамику. Электроизоляционные пластмассы — полиэтилен, поливинилхлорид, полистирол — характеризуются низкой диэлектрической постоянной, высокой электрической прочностью, высоким объемными поверхностным сопротивлением. Их применяют для изоляции проводов и электрооборудования в электротехнике, для замены эбонита.

    По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несиловые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоратрвные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами.

    Электрические свойства


    Полимеры характеризуются небольшими значениями ξ, высоким удельным объемным электросопротивлением (ρv>1010 Ом∙см) и большой электрической плотностью. (Табл. 1)

    Таблица1. Электрические свойства полимеров и пластмасс.



    Особенности электрических свойств полимеров:

    1) Пластмассы легко электролизуются при трении и долго сохраняют статические заряды на поверхности. Не электризуются пластмассы, наполненные графитом или порошками металлов, а также пластмассы со специальными добавками против электролизации.

    2) При разрушении полимеров под действием электрических разрядов на поверхности изделий образуется обугленный токопроводящий слой Этого недостатка не имеет полистирол, фторопласты, органическое стекло, кремнийогранические полимеры.

    3) Свойства пластмасс с неорганическими наполнителями выше, чем с органическими наполнителями.

    4) Свойства пластмасс снижаются при нагреве. У термопластов при нагреве немного выше температуры tст или tкр резко возрастают потери, снижается удельное объемное электросопротивление ρv; у реактопластов аналогичные изменения происходят более плавно по мере увеличения подвижности молекулярных цепей.

    5) Пластмассы с неоднородной структурой анизотропны в результате ориентации макромолекул и наполнителей. Электрическая прочность вдоль вытянутых молекул понижена, а перпендикулярно вытянутым молекулам – увеличена. У полимерных пленок величина Епр в несколько раз больше, чем у массивных полимеров. При вытяжке пленок Епр увеличивается еще на 30-50% из-за ориентации молекул. Слоистые пластики имеют наилучшие свойства перпендикулярно слоям наполнителя, вдоль слоев величины Епр и ρv понижены.

    6) Большинство пластмасс не используют при частотах выше 20 тыс. Гц, так как они недопустимо разогреваются и теряют электрическую прочность. Высокочастотными пластмассами являются неполярные полиэтилен, фторопласт-4, полистирол и специальные реактопласты с низкими потерями. Пористые полиэтилен и полистирол имеют самые низкие потери (у них ξ близка к 1), но применяются только в слабых полях, так как электрическая прочность мала (Епр =3÷4 кВ/мм).

    Технология изготовления

    Производство синтетических пластмасс основано на реакциях полимеризации -  процесс соединения одинаковых молекул в более крупные, поликонденсации – процесс получения макромолекулы с образование низкомолекулярного продукта или полиприсоединения – объединение различных основных молекул в высокомолекулярные продукты; низкомолекулярных исходных веществ, выделяемых и угля, нефти или природного газа, таких, к примеру, как бензол, этилен и других мономеров. При этом образуются высокомолекулярные связи с большим числом исходных молекул.

    Область применения

    Потребление пластических масс в строительстве непрерывно возрастает. При увеличении мирового производства пластмасс в 1960-70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества пластических материалов перед др. строительными материалами - лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко пластмассы (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ, герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования.

    Пластмассы занимают одно из ведущих мест среди конструкционных материалов машиностроения. При этом улучшаются также важнейшие технико-экономические параметры машин - уменьшается масса, повышаются долговечность, надёжность. Области применения пластмасс в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко- и гидроизоляции.

    В автомобилестроении особенно большую перспективу имеет применение Пластмассы для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и 40% его стоимости. Кузова из пластмасс более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще.

    В медицинской промышленности применение Пластмасс позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств.

    Заключение


    По методам переработки пластмассы имеют значительное преимущество перед многими другими материалами. Благодаря изготовлению изделий из пластмасс методами прессования, литья под давлением, формования, экструзии и другими методами устраняются отходы производства (стружки), появляется возможность широкой автоматизации производства.

    Наконец, большим преимуществом пластических масс перед другими материалами является неограниченность и доступность сырьевой базы (нефтяные газы, нефть, уголь, отходы лесотехнической промышленности, сельского хозяйства и др.).

    А также пластмасса дает высокий экономический эффект в тяжелом, энергетическом, транспортном и химическом машиностроении, автомобиле- и приборостроении. Широкое применение пластмассы находят также в строительстве. Из них изготавливают высококачественные термо-, гидро-   и звукоизоляционные материалы, арматуру, санитарно-техническое оборудование и др.

    Список литературы


    1. Ю.М. Лахтин «Материаловедение», Москва, «Машиностроение», 1990 год.


    написать администратору сайта