Главная страница
Навигация по странице:

  • РЕФЕРАТ по дисциплине «Проектирование и расчет высотных и специальных сооружений»

  • Выполнил

  • Воздействие отрицательной температуры

  • Коррозия металлических конструкций и методы их защиты

  • 3. Список используемой литературы

  • Типовые решения железнодорожных эстакад. СРО1(Ерболұлы Жәнібек). Реферат по дисциплине Проектирование и расчет высотных и специальных сооружений


    Скачать 424.33 Kb.
    НазваниеРеферат по дисциплине Проектирование и расчет высотных и специальных сооружений
    АнкорТиповые решения железнодорожных эстакад
    Дата22.10.2022
    Размер424.33 Kb.
    Формат файлаdocx
    Имя файлаСРО1(Ерболұлы Жәнібек).docx
    ТипРеферат
    #749086

                 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

    РЕСПУБЛИКИ КАЗАХСТАН

    Международная образовательная корпорация



    РЕФЕРАТ

    по дисциплине «Проектирование и расчет высотных и специальных сооружений»

    на тему «Деформации конструкций от повышенных температур и огня и влияние отрицательных температур на основания и конструкции зданий. Коррозионное разрушение конструкций. Компиляционный реферат»

    Выполнил: Ерболұлы Ж.

    Проверил: Келемешов А.Д.

    Алматы

    2022

    Деформации фундамента от влияние отрицательных температур

    Ф ундамент является важнейшей частью здания или сооружения, от которой зависит надежность всей конструкции здания. Именно фундамент, расположенный под землей, воспринимает нагрузку от надземных конструкций и передаёт её на основание. Есть различные типы фундамента, а выбор того или иного типа фундамента зависит в основном от типа грунта, на котором возводится здание. Долговечность фундамента и самого здания зависит не только от грамотного проектирования, но и от качественной гидроизоляции. Гидроизоляция фундамента зданий и сооружений является очень важным вопросом в строительстве. Проблемы проектирования и возведения фундамента Мировая практика строительства подтверждает, что большинство аварий существующих зданий и сооружений происходит из-за ошибок, связанных с устройством оснований и фундаментов. Поэтому при строительстве зданий и сооружений к выбору разновидности фундамента и его последующему проектированию следует подходить особенно тщательно. В среднем стоимость фундамента может составлять от 10 до 30% стоимости строительства, в зависимости от условий. Поэтому очень важно проектировать не только конструктивно, но и экономически выгодные решения фундаментов.

    Не менее важен выбор современных материалов и технологий. При возведении фундаментов широко используются бетон и железобетон, они являются основными конструкционными материалами для строительства зданий и сооружений. Железобетон обладает достаточно высокой морозостойкостью, прочностью на растяжение и сжатие. Поэтому железобетон широко используется при устройстве монолитных и сборных фундаментов в самых разных инженерно-геологических условиях. При устройстве фундаментов в слабых водонасыщенных грунтах фундамент подвергается высокому гидростатическому давлению воды. При этом грунтовые воды могут оказывать на бетон агрессивное воздействие.

    В этих случаях важно обеспечить не только высокую водонепроницаемость бетона, но и защиту от коррозии. Воздействие воды на бетон очень опасно, так как постепенно приводит к потере им несущей способности. Эта проблема неоднократно исследовалась в научной литературе. Фундамент также может являться ограждающей конструкцией, отделяя внутренние помещения от окружающей среды. В углубленных частях зданий и сооружений могут располагаться технические помещения, парковки и даже производство. Проникновение грунтовых вод через ограждающие конструкции совершенно недопустимо. Причины попадания воды внутрь конструкции

    1. Ошибки при проектировании, неверные конструктивные решения.

    2. Несоблюдение правил на стадии бетонирования. Например, нарушение температурного режима выдержки бетона – промерзание при низких температурах и затвердение при высоких приводит к повышению проницаемости.

    3. Отсутствие необходимой гидроизоляции деформационных швов, швов вводов коммуникаций, бетонирования, швов примыканий.

    4. Наличие посторонних примесей в бетоне – мусора, остатков опалубки.

    5. Дефекты, возникшие во время эксплуатации зданий и сооружений. К таким недостаткам относятся трещины, разрушение защитного слоя арматуры.

    6. Неэффективная гидроизоляция, устаревшие гидроизоляционные материалы.




    Воздействие отрицательной температуры

    Некоторые конструкции, например цоколь, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе воздействует на здания.

    Эксплуатационникам следует знать, что повреждения здания из- за промерзаний и выпучивания оснований могут произойти и происходят после многих лет эксплуатации, если допущены срезка грунта вблизи фундаментов, увлажнение основания, а также под воздействием других факторов, способствующих промерзанию.

    Износ здания с учетом выполнения мероприятий по ремонту, наладке и обслуживанию инженерных систем и конструкций называют нормальным физическим износом и в соответствии с ним назначают нормативный срок службы здания. В частности, для жилых зданий нормативные сроки службы определяет группа капитальности здания (см. табл. 2.1).

    Величина физического износа - это количественная оценка технического состояния элементов здания, показывающая долю ущерба, потерю ими первоначальных физических характеристик, удовлетворяющих эксплуатационным требованиям.

    В соответствии с действующей в настоящее время методикой физический износ здания в целом определяется путем сложения величин физического износа отдельных конструктивных элементов (по доле восстановительной стоимости каждого из них в общей стоимости здания). При этом признаки физического износа устанавливаются путем осмотра (визуальный способ) и с использованием простейших приспособлений (уровень, отвес, метр и т. и.). Методикой предусматривается в некоторых случаях вскрытие отдельных конструктивных элементов. Точность определения процента физического износа по таблицам методики находится в пределах ±5 %.

    Признаки износа даны для каждой степени технического состояния конструктивного элемента с определенным интервалом в зависимости от ценности и условий его работы. Так, фундаменты здания работают в лучших условиях по сравнению со стенами, и для них интервал данных принят 20 %, причем признаки физического износа указаны для средних значений. Износ более ценных конструктивных элементов указан с интервалом 10 %, а признаки даны для крайних значений.

    Для определения физического износа всего здания по износу отдельных элементов пользуются математической зависимостью

    где I. - удельный вес стоимости конструктивного элемента от восстановительной стоимости, %; Ф; - показатель физического износа конструктивного элемента, установленного при техническом обследовании, %; п - число конструктивных элементов.

    Динамика физического износа, т. е. характер его количественных изменений во времени, в зависимости от фактического срока эксплуатации имеет большое значение при эксплуатации жилищного фонда.

    Разрушающие и прочие факторы по-разному влияют на износ материалов и конструктивных элементов зданий. Срок службы здания в целом зависит от долговечности его конструкции. Элементы зданий по прочности неравнозначны, и сроки службы у них разные. Следует также учитывать и объективные различия разрушающих воздействий на те или иные конструктивные элементы (внутренние лестничные марши и наружные стены при сравнимых прочностных характеристиках в процессе эксплуатации испытывают совершенно разные нагрузки ит.д.).

    Таким образом, существует непосредственная взаимосвязь между величиной физического износа и временными факторами. Под временными факторами понимаются две характеристики - фактический возраст здания (срок эксплуатации) и его долговечность (предельный срок службы). В свою очередь, предельный срок службы определяется по продолжительности времени, в течение которого несущие конструктивные элементы жилищного здания утрачивают свою прочность. Как правило, предельный срок службы здания численно равен значению нормативного срока службы, в соответствии с группами капитальности зданий (см. табл. 2.1).

    Физический износ здания, достигшего нормативного срока службы, соответствует уровню 75-80 % при условии осуществления в этот период текущих ремонтов, обеспечивающих поддержание нормального эксплуатационного состояния, и капитальных ремонтов, непосредственно связанных с возмещением физического износа.

    Очевидно, что проведение мероприятий по простому воспроизводству (проведение текущих и капитальных ремонтных работ) существенно изменяет динамику физического износа, «приглушает» ее. Для определения эффективности деятельности эксплуатирующей организации учитывается то, что при нормальной эксплуатации объектов жилищного фонда значения их физического износа, определяемые при проведении обследования, не должны превышать значений физического износа, рассчитанных с использованием нормативных документов. Под нормальной эксплуатацией понимается такая эксплуатация объектов жилищного фонда, при которой эксплуатирующая организация производит полный комплекс работ по технической

    эксплуатации, т. е. проводит работы по текущему содержанию объектов, своевременный текущий и капитальный ремонт.

    Анализируя графики изменения физического износа отдельных конструктивных элементов здания, которые приводятся в ВСН 53-86р [2], можно предположить, что закономерность нарастания физического износа является общей величиной для всех конструктивных элементов и динамика физического износа является функцией от периода эксплуатации конструктивного элемента.

    Коррозия металлических конструкций и методы их защиты

    Коррозионное разрушение металла является одной из существенных причин потери работоспособности и снижения долговечности металлических конструкций. Коррозией металлов называется окислительно-восстановительный процесс разрушения металлов и сплавов в результате химического или электрохимического взаимодействия с окружающей средой, происходящий на поверхности раздела фаз. Более всего от коррозии страдают железо и его сплавы, а также алюминий.

    Металлические конструкции подвержены в основном электрохимической коррозии, возникающей при соприкосновении металлов с электролитами.



    При оценке технического состояния конструкций, пораженных коррозией, необходимо прежде всего определить вид коррозии. Это дает возможность сузить интервал поиска основных причин коррозионного повреждения конструкций, более точно определить влияние коррозионного повреждения на несущую способность элементов конструкций, а также разработать наиболее обоснованные мероприятия по восстановлению несущей способности и защите конструкций от коррозии.

    По характеру поражения металла различают сплошную (общую) и локальную коррозию.

    Сплошная коррозия в свою очередь может быть равномерной и неравномерной в зависимости от глубины поражения на различных участках поверхности. Если при коррозии нарушается одна структурная составляющая сплава (графитизация чугуна) или один из компонентов сплава, то коррозию называют структурно-избирательной (рис. 2.1).

    Сплошная коррозия характерна для стали, алюминия, цинковых и алюминиевых защитных покрытий в любых средах, в которых коррозионная стойкость данного материала или металла покрытия недостаточна. Этот вид коррозии характеризуется относительно равномерным по всей поверхности постепенным проникновением вглубь металла, то есть уменьшением толщины сечения элемента или толщины защитного слоя металлического покрытия. При коррозии в нейтральных, слабощелочных и слабокислых средах элементы конструкции покрываются видимым слоем продуктов коррозии, после механического удаления которого до чистого металла поверхность конструкций оказывается шероховатой, но без видимых язв, точек коррозии и трещин.

    При коррозии в кислых (а для цинка и алюминия и в щелочных) средах видимый слой продуктов коррозии может не образовываться Общей коррозии наиболее подвержены, как правило, поверхности в узких щелях, зазорах и на участках скопления пыли и влаги.

    При локальной коррозии разрушение сосредоточивается на отдельных участках поверхности, и в зависимости от размера поражений различают коррозию пятнами (d > h), язвенную (d = h) и питтинговую, или точечную (d < h). Язвенная и питтинговая коррозия листового металла при сквозном его разрушении превращается в сквозную коррозию. Из питтинговой коррозии со временем может развиться подповерхностная коррозия, захватывающая слой металла под очень тонким (например, наклепанным) слоем, который впоследствии вздувается и растрескивается, (рис. 2.1, г, д, е, ж).

    Язвенная коррозия характерна в основном для углеродистой и низколегированной сталей при эксплуатации конструкций в жидких средах и грунтах, в меньшей степени — для алюминия, алюминиевых и цинковых покрытий. Язвенная коррозия низколегированной стали в атмосферных условиях чаще всего связана с неблагоприятной структурой металла, с повышенным количеством неметаллических включений, в первую очередь сульфидов с высоким содержанием марганца. Язвенная коррозия обычно сопровождается образованием толстых слоев продуктов коррозии, покрывающих всю поверхность металла или значительные ее участки вокруг отдельных крупных язв. Коррозионные язвы являются острыми концентраторами напряжений и могут оказаться инициаторами зарождения усталостных трещин и хрупких разрушений.

    Наиболее опасны межкристаллитная и транскристаллитная коррозии (рис. 2.1,з, и). Первая проходит по наименее стойким границам зерен, не затрагивая зерен металла. Вторая — рассекает зерна металла, проходя через них трещиной. Межкристаллитной коррозии подвержены многие сплавы: строительные стали, нержавеющие высокохромистые и хромоникелиевые стали, дюралюминиевые сплавы и др. Межкристаллитная коррозия характеризуется относительно равномерным распределением множественных трещин на больших участках поверхности конструкций. Под оптическим микроскопом на поперечных шлифах, изготавливаемых из отобранных проб, видно, что трещины распространяются только по границам зерен металла.

    Коррозионное растрескивание — вид квазихрупкого разрушения стали и высокопрочных алюминиевых сплавов при одновременном воздействии статических напряжений растяжения и агрессивных сред. Разрушение характеризуется образованием единичных и множественных трещин, связанных с концентрацией основных и внутренних напряжений. Трещины могут распространяться между кристаллами или по телу зерен. Коррозионное растрескивание характерно для сталей с повышенным содержанием водорода. Коррозионное растрескивание выявляется фрактографическим анализом проб.

    Аналогичные признаки имеет коррозионная усталость — вид квазихрупкого разрушения материалов при одновременном воздействии циклических напряжений и жидких агрессивных сред. Об интенсивности коррозионной усталости судят по числу циклов до зарождения трещин или по скорости роста наиболее длинных трещин.

    Основным фактором, влияющим на развитие коррозии, служит атмосферная среда. Показателями, определяющими степень агрессивности среды, являются: относительная влажность, температура, возможность образования конденсата, состав и концентрация газов и пыли, туманы агрессивных жидкостей. В зависимости от условий эксплуатации конструкции могут находиться под воздействием общезаводской атмосферы и внутрицеховой. Особенно неблагоприятным фактором является относительная влажность. Наибольшая скорость коррозии реализуется при периодическом выпадении конденсата, однако она резко возрастает уже при достижении так называемой критической влажности — для стали 70...75 %. При наличии продуктов коррозии на поверхности конструкций критическая влажность снижается до 50...60 %.

    Степень коррозионного износа определяют измерением толщины тщательно очищенного от продуктов коррозии прокатного профиля. Измерения осуществляют с помощью скобы с индикатором часового типа с ценой деления 0,01 мм. Замеры должны быть произведены в 10—20 местах по длине элемента для получения достоверного результата надо сделать около 200 замеров однотипных элементов. Для более детального исследования коррозионного поражения можно использовать металлографический метод, который позволяет определить меж- и внутрикристаллический характер поражений, коррозионную активность фаз, глубину и протяженность коррозионных трещин. Основные количественные показатели коррозионного износа: потеря толщины сечения элемента; глубина коррозионных язв; условная скорость коррозии (средняя и максимальная) за срок эксплуатации к моменту обследования: относительные коррозионные потери поперечного сечения за период эксплуатации.

    В зависимости от интенсивности коррозионного износа металлоконструкций в соответствии с нормами [42] атмосферная среда по агрессивности делится на четыре группы: неагрессивную, слабоагрессивную, среднеагрессивную и сильноагрессивную, в которых стали разных марок имеют одинаковые скорости коррозии по группам (табл. 2.7).

    При оценке степени опасности коррозии следует иметь в виду, что при коррозионных повреждениях возможно охрупчивание стали и снижение несущей способности конструкции не только из-за уменьшения площади поперечного сечения элементов, но и в результате снижения прочности.

    Охрупчивание сталей происходит по двум причинам: коррозионные повреждения играют роль концентраторов напряжений; взаимодействие агрессивной среды с материалом в вершине трещины обусловливает протекание сложных физико-химических процессов, которые увеличивают опасность таких дефектов. Первая причина снижает ударную вязкость материала из-за возможности облегченного зарождения трещины в зонах с коррозионными поражениями.

    Заключение

    Снижение прочностных характеристик стали из-за коррозионного повреждения существенно тогда, когда глубина повреждений соизмерима с толщиной t элемента. Для тонкостенных элементов конструкций (t = 6...8 мм) рекомендуется при проверочных расчетах снижать расчетное сопротивление сталей в слабоагрессивной и среднеагрессивной средах соответственно на 5 и 10 %.

    Более интенсивное падение прочностных характеристик из-за коррозии имеет место при отрицательных температурах. Понижающие коэффициенты могут быть приняты по табл. 2.9.

    Своевременная защита от коррозии металлических конструкций в процессе эксплуатации — одно из главных условий долговечности и надежности сооружений. Наиболее распространенным и достаточно эффективным средством для защиты металлоконструкций от коррозии являются лакокрасочные (органические) покрытия — высокомолекулярные пленки естественного и искусственного происхождения. Физико-химическую основу лакокрасочных материалов составляют многокомпонентные системы, содержащие пленкообразующие вещества, растворители, пигменты и добавки различного назначения. Лакокрасочное покрытие должно быть сплошным, беспористым, газо- и водонепроницаемым, химически стойким, эластичным, обладать хорошей адгезией и механической прочностью.

    В зависимости от рода пленкообразующего вещества лакокрасочные материалы подразделяются на масляные, битумные, глифталевые, перхлорвиниловые, эпоксидные и др. В большинстве случаев материал наносится на предварительные слои грунтовки и шпатлевки, обычно в несколько покрывных слоев. Выбор типа лакокрасочного материала зависит от степени агрессивности эксплуатационной среды и определяется нормативными документами [42].

    При восстановлении защитных покрытий большое значение имеет подготовка поверхности элементов под окраску. Перед нанесением покрытия поверхность очищается механическим или химическим способом от ржавчины, старой краски, жировых и других загрязнений до степени 1 (ГОСТ 9.402-80*). К механическим способам относятся пескоструйная и дробеструйная очистка, обработка поверхности механизированным инструментом. При пескоструйной очистке применяется специальный порошок (металлический песок), расход которого примерно в 10 раз меньше по сравнению с обычным кварцевым песком. Запыленность воздуха ниже допустимой по требованиям санитарных норм. Такие же преимущества имеет и дробеструйная очистка. Применяется гидропескоструйный способ очистки, осуществляемый эжектором, подающим струю воды с песком. Для предотвращения коррозии металлической поверхности в воду добавляют -1,6 % замедлителя коррозии (ингибитора). Возможна очистка пневматическими или электрическими инструментами.


    3. Список используемой литературы

    1. Основания и фундаменты (Б.И. Далматов)

    2. Основания и фундаменты промышленных и гражданских зданий (О.Г. Денисов).

    3. Основания и фундаменты, механика грунтов (журнал)

    4. Основания и фундаменты, подземные сооружения (Е.А. Сорочан)

    5. 1. Проектирование фундаментов. Сост. А. К. Поправко, Б. Е. Славин, Ю. Н. Третьяков, Г. Н. Полянкин, Ю. Н. Савельев. Часть 1. Новосибирск, 1999. 26 с.

    6. Основания и фундаментыты на просадочных грунтах (В.И. Крутов)


    написать администратору сайта