реферат. Реферат Сабитова Куралай РПЗС 20-11. Реферат по дисциплине Строительные материалы
Скачать 91.58 Kb.
|
Министерство образования и науки Республики Казахстан Международная образовательная корпорация Казахская Головная Архитектурно-Строительная Академия Реферат по дисциплине «Строительные материалы» Тема: «Современные способы антикоррозионной защиты металлических конструкций» Выполнила: Сабитова К. РПЗС 20-11* Проверила: Байсариева А. Алматы, 2022 г Содержание Введение………………………………………………………………………………..3 1. Общие сведение и понятие………………………………….....……….….………4 1.1 Защита стальных строительных конструкций от коррозии.…………..…………8 2. Применение противокоррозионных защитных покрытий…………………...…...9 Заключение……………………………………………………………………..…….12 Список использованной литературы…………………………………………..…13 Введение Термин коррозия происходит от латинского слова corrodere, что означает разъедать, разрушать. Коррозия - это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Коррозия металлов - разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства. В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин "коррозия" употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется. Общие сведение и понятие Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V век до нашей эры) уже имеется упоминание о применении олова для защиты железа от коррозии. Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих её протекание. Коррозия металлов осуществляется в соответствии с законами природы и поэтому ее нельзя полностью устранить, а можно лишь замедлить. В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Легирование. Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите. Этим способом является получение сплавов, которое называется легирование. В настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия имеет место, хотя и с малой скоростью. Оказалось, что при использовании легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило, названное правилом Таммана, согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве 1/8 атомной доли, то есть один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию. В элементах несущих конструкций из стали марки 10ХНДП с толщиной стенки не менее 5 мм, не подлежащих защите от коррозии, очистка поверхности от прокатной окалины не является обязательной. Сталь марок 10ХСНД и 15ХСНД при атмосферной коррозии практически во всех слабо - и среднеагрессивных средах в 1,5-3 раза более коррозионностойка, чем углеродистая сталь. Поэтому конструкции из стали этих марок, эксплуатируемые на открытом воздухе в сухой зоне влажности при концентрации агрессивных газов по группе А, можно применять без защиты от коррозии. Требования к очистке поверхности стали остаются теми же, что и для стали марки 10ХНДП. В более агрессивных средах на открытом воздухе, а также в агрессивных средах внутри помещений сталь повышенной коррозионной стойкости должна быть защищена от коррозии. Долговечность лакокрасочных покрытий на поверхности стали повышенной коррозионной стойкости по крайней мере в 1,5 раза больше, чем на поверхности углеродистой стали. Пониженной по сравнению с углеродистой сталью коррозионной стойкостью в атмосфере с серосодержащими газами и в жидких средах обладает марганцовистая сталь марок 09Г 2, 14Г 2, а также сталь 18Г 2АФпс. К защите от коррозии конструкций из стали этих марок предъявляются такие же требования, как и к защите конструкций из углеродистой стали. Тем не менее конструкции из стали пониженной коррозионной стойкости главой СНиП 2.03.11-85 не допускаются в средах с повышенным содержанием сернистого ангидрида и сероводорода (по группам газов Б-Г), поскольку даже под защитными лакокрасочными покрытиями будет протекать избирательная коррозия по включениям сульфида марганца, ускоряющая потерю несущей способности конструкций. Сталь марок 15Г 2СФ, 14Г 2АФ, 16Г 2АФ и 18Г 2АФпс менее подвержена язвенной коррозии, чем марганцовистая или кремнемарганцовистая стали, и на эти марки не распространяются ограничения по применению. Защитные покрытия. По виду материалов защитные покрытия для строительных металлических конструкций могут быть классифицированы как лакокрасочные, металлические, оксидные, изоляционные. Возможны комбинации различных видов покрытий. По механизму защитного действия покрытия могут быть классифицированы как барьерные, т.е. обеспечивающие только изоляцию, протекторные и с комбинированным барьерно-протекторным действием. Применение преобразователей и модификаторов ржавчины как правило недопустимо. Лакокрасочные покрытия в зависимости от вида пигмента обеспечивают барьерную, комбинированную или протекторную (электрохимическую) защиту стали. Цинковые защитные покрытия стальных конструкций обеспечивают как протекторную, так и барьерную защиту от коррозии; алюминиевые - обычно только барьерную, а в присутствии хлористых солей или хлора - также и протекторную. Нанесению лакокрасочных или металлических защитных покрытий должна предшествовать соответствующая подготовка поверхности конструкций; цель подготовки поверхности удаление прокатной окалины, продуктов коррозии, жировых и других загрязнений и придание поверхности шероховатости, улучшающей сцепление с ней защитного покрытия. Подготовка поверхности стальных конструкций перед нанесением защитных покрытий. На заводах металлических конструкций применяются следующие основные методы подготовки поверхности проката или конструкций, покрытых продуктами коррозии (окалиной или ржавчиной), независимо от степени окисленности и зажиренности поверхности по ГОСТ 9.402-80*: - механические: обработка сухим абразивом (дробеструйная, дробеметная, металлическимпеском); обработка механизированным инструментом (проволочными щетками, шлифовальными машинками, иглофрезами); - химические: обезжиривание в водных щелочных растворах; обезжиривание в органических растворителях; травление в кислотах. Подготовка поверхности может производиться: - на механизированных и автоматизированных технологических линиях очистки проката механическими или химическими методами с последующей консервацией поверхности на время изготовления конструкций; консервирующие покрытия не должны препятствовать сварке и в дальнейшем входить в систему лакокрасочного покрытия (грунтовки BJI-02, BJI-023, ЭФ-0121 и т.п.); после сварки конструкций в этом случае необходимо производить зачистку сварных швов и околошовной зоны под грунтование; очистка проката абразивом производится и перед нанесением металлизационных покрытий; - в тупиковых камерах дробеструйной очистки или в ваннах травления элементов и конструктивных отправочных марок после их сборки и сварки; подготовка поверхности готовых конструкций и отправочных марок на механизированных технологических линиях целесообразна только при условии достаточной повторяемости конфигураций и габаритов, а также доступности всей поверхности для обработки. Кислотное травление допускается для собранных конструкций лишь при условии отсутствия карманов и зазоров, в которых может остаться электролит, и не допускается для конструкций из стали 600 МПа и более высокой прочности. Кислотное травление на ЗМК рекомендуется как метод подготовки поверхности стальных конструкций под нанесение металлических (цинковых, алюминиевых) покрытий методом погружения в расплав. Сварные конструкции должны иметь в основном стыковые или угловые соединения. Нахлесточные соединения должны производиться только лобовыми или только фланговыми швами при гарантированном зазоре между элементами не менее 1,5 мм или при сплошной обварке по контуру. Травление с последующим пассивированием, как и обработка сухим абразивом дробеструйным или дробеметным методами, обеспечивает вторую и третью степени очистки поверхности по ГОСТ 9.402-80; обработка механизированным инструментом допускается при малых объемах работ (зачистка сварных швов, местное удаление продуктов коррозии) обеспечивает при этом третью степень очистки. Главой СНиП 2.03.11-85 эта степень очистки поверхности допускается только для конструкций, эксплуатируемых в слабоагрессивных и неагрессивных средах. Очистка ручными щетками поверхности конструкций, покрытой прокатной окалиной или толстым слоем ржавчины, не обеспечивает степени очистки свыше четвертой и может быть допущена только для конструкций, предназначенных для эксплуатации в неагрессивных средах. Полное удаление продуктов коррозии почти в 5 раз увеличивает срок службы лакокрасочных покрытий. Очистка от окислов поверхности рулонных материалов (тонколистовая оцинкованная сталь, алюминий) перед нанесением полимерных покрытий в заводских условиях производится специальными методами. Легкий налет продуктов коррозии, который может быть на поверхности листа, снимается дисковыми щетками из нетканого материала с вкраплениями абразива. За удалением продуктов коррозии следует промывка. Обезжиривание конструкций перед окрашиванием, как правило, производится в тех случаях, когда металл не покрыт толстыми слоями окалины или ржавчины (холоднокатаная сталь, алюминий) или когда прокат уже защищен металлическими покрытиями, консервационными смазками, межоперационными или консервационными грунтовками (оцинкованная сталь, канаты, очищенный и законсервированный прокат). Зажиренные участки в этих случаях очищают органическими растворителями, которые не разрушают уже имеющееся защитное покрытие. Исключение составляют случаи, когда необходимо обезжиривание поверхности, зажиренной до первой или второй степеней (ГОСТ 9.402-80), а также перед очисткой от ржавчины ручным или механизированным инструментом или перед кислотным травлением. В тех случаях, когда подготовка поверхности и нанесение покрытий выполняются полностью на монтажных площадках, например, при защите от коррозии рулонируемых конструкций негабаритных резервуаров, очищать поверхности от окислов необходимо сухим абразивом. Грунтовки и фосфатирование. Часто под лакокрасочный слой наносят грунтовки. Пигменты, входящие в ее состав, также должны обладать ингибиторными свойствами. Проходя через слой грунтовки, вода растворяет некоторое количество пигмента и становится менее коррозионно-активной. Среди пигментов, рекомендуемых для грунтов, наиболее эффективным признан свинцовый сурик Pb3O4. Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или распылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H3PO4. В заводских условиях фосфатирование ведут при 99-97 0С в течение 30-90 минут. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды. Электрохимическая защита. В производственных условиях используют также электрохимический способ - обработку изделий переменным током в растворе фосфата цинка при плотности тока 4 А/дм 2 и напряжении 20 В и при температуре 60-70 0С. Фосфатные покрытия представляют собой сетку плотносцепленных с поверхностью фосфатов металлов. Сами по себе фосфатные покрытия не обеспечивают надежной коррозионной защиты. Преимущественно их используют как основу под окраску, обеспечивающую хорошее сцепление краски с металлом. Кроме того, фосфатный слой уменьшает коррозионные разрушения при образовании царапин или других дефектов. Силикатные покрытия. Для защиты металлов от коррозии используют стекловидные и фарфоровые эмали, коэффициент теплового расширения которых должен быть близок к таковому для покрываемых металлов. Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали - прозрачные или загашенные. Их компонентами являются SiO2 (основная масса), B2O3, Na2O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6-10 % глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий. Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу, вследствие чего и начинается коррозия. Защита стальных строительных конструкций от коррозии металлическими покрытиями Горячее цинкование и алюминирование. Процесс нанесения покрытия основан на погружении сварных конструкций или проката в расплавленный металл. Толщина покрытия на конструкциях из толстолистового или профильного проката колеблется в широких пределах (60-200 мкм) и зависит от продолжительности нанесения покрытий, состава ванны, температуры расплавленного металла или сплава, конструктивной формы и скорости извлечения конструкции из ванны. Процесс отличается простотой технологии и высокой производительностью. Металлизационные покрытия могут быть нанесены как на технологических линиях в заводских условиях, так и на монтажных площадках. Процесс заключается в распылении расплавленного металла на очищенную от окислов поверхность проката или конструкций. Скорость коррозии металлизационных покрытий выше, чем скорость коррозии покрытий из соответствующего металла, полученных методом погружения в расплав, а расход металла несколько больше. Поэтому металлизационные покрытия рекомендуется применять для конструкций, которые нетехнологично защищать методом погружения в расплав. Металлизация готовых решетчатых конструкций вообще нецелесообразна из-за непроизводительных потерь металла. При малых толщинах металлизационное покрытие пористое и требует дополнительной пропитки, а получение толстых слоев (150-300 мкм) при ручном нанесении покрытия - длительный процесс, поэтому желательна механизация работ на линиях. Эффективность металлизации труб и листовых конструкций на линиях по расходу материалов и производительности труда сопоставима с эффективностью горячего цинкования или алюминирования. Преимущества металлизационных покрытий, наносимых распылением, по сравнению с покрытиями, полученными погружением в расплав, следующие: - можно получать практически любую заданную толщину, в связи с чем целесообразно применять относительно тонкие металлизационные покрытия как подслой под лакокрасочное покрытие для конструкций, эксплуатируемых в средне или сильноагрессивных средах; - покрытия можно наносить на конструкции любых габаритов, в том числе после монтажа; -можно получать металлизационные покрытия заданного состава, например алюминий с цинком (псевдосплав). Гальванические покрытия. Гальваническим методом наносят на поверхность стали цинковые, кадмиевые, хромовые и другие металлические покрытия. Гальванические покрытия получают осаждением металлов из растворов или расплавов солей под действием электрического тока на поверхности защищаемых изделий. Метод применяется для защиты относительно мелких деталей. Толщина гальванического покрытия в зависимости от материала покрытия обычно не превышает 20 мкм. Заданную толщину покрытия можно регулировать с точностью до нескольких микрон. Ингибиторы. Применение ингибиторов - один из самых эффективных способов борьбы с коррозией металлов в различных агрессивных средах. Ингибиторы - это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от латинского inhibere, что означает сдерживать, останавливать. Ещё по данным 1980 года, число известных науке ингибиторов составило более пяти тысяч. Ингибиторы дают народному хозяйству немалую экономию. Ингибирующее воздействие на металлы, прежде всего на сталь, оказывает целый ряд неорганических и органических веществ, которые часто добавляются в среду, вызывающую коррозию. Ингибиторы имеют свойство создавать на поверхности металла очень тонкую пленку, защищающую металл от коррозии. Ингибиторы в соответствии с Х. Фишером можно сгруппировать следующим образом. 1) Экранирующие, то есть покрывающие поверхность металла тонкой пленкой. Пленка образуется в результате поверхностной адсорбции. При воздействии физических ингибиторов химических реакций не происходит. 2) Окислители (пассиваторы) типа хроматов, вызывающие образование на поверхности металла плотно прилегающего защитного слоя окисей, которые замедляют протекание анодного процесса. Эти слои не очень стойки и при определенных условиях могут подвергаться восстановлению. Эффективность пассиваторов зависит от толщины образующегося защитного слоя и его проводимости. 3) Катодные - повышающие перенапряжение катодного процесса. Они замедляют коррозию в растворах неокисляющих кислот. К таким ингибиторам относятся соли или окислы мышьяка и висмута. Эффективность действия ингибиторов зависит в основном от условий среды, поэтому универсальных ингибиторов нет. Для их выбора требуется проведение исследований и испытаний. Применение противокоррозионных защитных покрытий Для защиты оборудования и строительных конструкций от коррозии в отечественной и зарубежной противокоррозионной технике применяется большой ассортимент различных химически стойких материалов - листовые и пленочные полимерные материалы, биопластмассы, стеклопластики, углеграфитовые, керамические и другие неметаллические химически стойкие материалы. В настоящее время расширяется применение полимерных материалов, благодаря их ценным физико-химическим показателям, меньшему удельному весу и др. коррозионный процесс защитное покрытие Большой интерес для применения в противокоррозионной технике представляет новый химически стойкий материал - шлакоситалл. Значительные запасы и дешевизна исходного сырья - металлургических шлаков - обусловливают экономическую эффективность производства и применения шлакоситалла. Шлакоситалл по физико-механическим показателям и химической стойкости не уступает основным кислотоупорным материалам (керамике, каменному литью), широко применяемым в противокоррозионной технике. Среди многочисленных полимерных материалов, применяемых за рубежом в противокоррозионной технике, значительное место занимают конструкционные пластмассы, а также стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей. В настоящее время химическая промышленность выпускает значительный ассортимент материалов, обладающих высокой стойкостью к действию различных агрессивных сред. Особое место среди этих материалов занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, теплостоек до температуры + 700 0С и так далее. Другими направлениями использования полиэтилена в качестве химически стойкого материала являются порошкообразное напыление и дублирование полиэтилена стеклотканью. Широкое применение полиэтиленовых покрытий объясняется тем, что они, будучи одними из самых дешевых, образуют покрытия с хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением. Также в противокоррозионной технике особого внимания заслуживают монолитные полы на основе синтетических смол. Высокая механическая прочность, химическая стойкость, декоративный вид - все эти положительные качества делают монолитные полы чрезвычайно перспективными. Продукция лакокрасочной промышленности находит применение в различных отраслях промышленности и строительства в качестве химически стойких покрытий. Лакокрасочное пленочное покрытие, состоящее из последовательно наносимых на поверхность слоев грунтовки, эмали и лака, применяют для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоходов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям твердых частиц, входящих в состав среды. В последнее время большое внимание уделяется получению и применению комбинированных покрытий, поскольку в ряде случаев использование традиционных методов защиты является неэкономичным. В качестве комбинированных покрытий, как правило, используется цинковое покрытие с последующей окраской. При этом цинковое покрытие играет роль грунтовки. Перспективно применение резин на основе бутилкаучука, которые отличаются от резин на других основах повышенной химической стойкостью в кислотах и щелочах, включая концентрированную азотную и серную кислоты. Высокая химическая стойкость резин на основе бутилкаучука позволяет более широко применять их при защите химической аппаратуры. Данные способы находят широкое применение в промышленности в силу многих своих преимуществ - уменьшения потерь материалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д. Заключение Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII-XIX. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Начало практического использования человеком железа относят к IX веку до нашей эры. Именно в этот период человечество перешло из бронзового века в век железный. В XXI веке высокие темпы развития промышленности, интенсификация производственных процессов, повышение основных технологических параметров (температура, давление, концентрация реагирующих средств и др.) предъявляют высокие требования к надежной эксплуатации технологического оборудования и строительных конструкций. Особое место в комплексе мероприятий по обеспечению бесперебойной эксплуатации оборудования отводится надежной защите его от коррозии и применению в связи с этим высококачественных химически стойких материалов. Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10 % ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, т.к. вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее. Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства. Список использованной литературы 1. Металлические конструкции. В Зт. Т.1. Общая часть. (Справочник-проектировщика)/ Под общ. ред. заслуж. строителя РФ, лауреата госуд. премии СССР В.В. Кузнецова (ЦНИИпроектстальконструкция им. Н.П. Мельникова) - М.: изд-во АСВ, 1998,- 576 стр. с илл. 2. ГОСТ 9.908-85. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости. 3. СП 28.13330.2012 Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85. 4. Андреев И.Н. Коррозия металлов и их защита. - 1979. 5. Улиг Г.Г., Реви Р.У. Коррозия и борьба c ней. - 1989. |