влияние анатомии на физ воспитание. Влияние физических упражнений на состояние скелетной мускулатуры. Реферат влияние физических упражнений на состояние скелетной мускулатуры
Скачать 33.55 Kb.
|
Влияние физических упражнений на состояние скелетной мускулатуры Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет» Факультет «Журналистика» Кафедра «Средства массовой информации» РЕФЕРАТ Влияние физических упражнений на состояние скелетной мускулатуры Проверил, доцент кафедры физического воспитания и здоровья Светлана Александровна Никифорова Автор работы (проекта) студент группы ФЖ-303 Екатерина Дмитриевна Кузнецова Челябинск 2014 ОГЛАВЛЕНИЕ Введение. Анатомо-физиологические особенности опорно-двигательного аппарата. Работа мышц в покое и при физической нагрузке. Влияние занятий спортом на состояние скелетной мускулатуры. Особенности влияния физических упражнений Заключение Библиографический список ВВЕДЕНИЕ Занятия физическими упражнениями необходимы в любом возрасте. С юношеских лет и до глубокой старости человек в состоянии выполнять упражнения, укрепляющие его организм, оказывающие самое разнообразное воздействие на все его системы. Они рождают чувство бодрости и особой радости, знакомое каждому, кто систематически занимается каким-либо видом спорта. Мышечная ткань принимает участие во всех движениях, совершаемых человеком. Она способствуют продвижению крови по сосудам, пищи - по пищеварительному тракту, продуктов обмена - по мочевыводящим путям, секрета желез - по протокам и т.д. Работающие мышцы, мускулатура образуют поток импульсов, постоянно стимулирующий обмен веществ, деятельность нервной системы и всех органов, что улучшает использование тканями кислорода, не откладывается избыточный жир, повышаются защитные свойства организма. Систематические тренировки делают мышцы более сильными, а организм в целом более приспособленным к условиям внешней среды. Под влиянием мышечных нагрузок увеличивается частота сердцебиений, мышцы сердца сокращаются сильнее, повышается артериальное давление. Это ведет к функциональному совершенствованию системы кровоснабжения. Во время мышечной работы увеличивается частота дыхания, углубляется вдох, усиливается выдох, улучшается вентиляционная способность лёгких. Постоянные физические упражнения способствуют увеличению массы скелетной мускулатуры, укреплению связок, суставов, росту и развитию костей. Люди, выполняющие необходимый объем двигательной активности, лучше выглядят, здоровее психически, менее подвержены стрессу и напряжению, лучше спят, у них меньше проблем со здоровьем. I. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА Опорно-двигательный аппарат состоит из костного скелета и мышц. Мышцы человека делятся на три вида: гладкая мускулатура внутренних органов и сосудов, характеризующаяся медленными сокращениями и большой выносливостью; поперечнополосатая мускулатура сердца, работа которой не зависит от воли человека, и, наконец, основная мышечная масса - поперечнополосатая скелетная мускулатура, находящаяся под волевым контролем и обеспечивающая нам функцию передвижения. Мышцы, выполняя свою работу, одновременно совершенствуют функции практически всех внутренних органов, в первую очередь это касается сердечнососудистой и дыхательной систем. Мышечное волокно характеризуется следующими основными физиологическими свойствам: возбудимостью, сократимостью и растяжимостью. Эти свойства в различном сочетании обеспечивают нервно-мышечные особенности организма и наделяют человека физическими качествами, которые в повседневной жизни и спорте называют силой, быстротой, выносливостью и т. д. Они отлично развиваются под воздействием физических упражнений. Мышечная система функционирует не изолированно. Все мышечные группы прикрепляются к костному аппарату скелета посредством сухожилий и связок. Установлена взаимосвязь мышц и внутренних органов, которая получила название моторно-висцеральных рефлексов. Работающие мышцы посылают по нервным волокнам информацию о собственных потребностях, состоянии и деятельности внутренним органам через вегетативные нервные центры и таким образом влияют на их работу, регулируя и активизируя ее. Мышцы являются мощной биохимической лабораторией. Они содержат особое дыхательное вещество - миоглобин (сходный с гемоглобином крови), соединение которого с кислородом (оксимиоглобин) обеспечивает тканевое дыхание при экстраординарной работе организма, например при внезапной нагрузке, когда сердечнососудистая система еще не перестроилась и не обеспечивает доставку необходимого кислорода. Большое значение миоглобина заключается в том, что, являясь первейшим кислородным резервом, он способствует нормальному протеканию окислительных процессов при кратковременных нарушениях кровообращения и статической работе. Количество миоглобина достаточно велико и достигает 25% от общего содержания гемоглобина. Происходящие в мышцах разнообразные биохимические процессы в конечном итоге отражаются на функции всех органов и систем. Так, в мышцах происходит активное накопление аденозинтрифосфорной кислоты (АТФ), которая служит аккумулятором энергии в организме, причем процесс накопления ее находится в прямой зависимости от деятельности мышц и поддается тренировке. II. РАБОТА МЫШЦ В ПОКОЕ И ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин - 42% веса тела, у женщин - 35%, у спортсменов - 45-52%. По происхождению, строению и даже функции мышечная ткань неоднородна. Основным свойством мышечной ткани является способность к сокращению - напряжению составляющих ее элементов. Для обеспечения движения элементы мышечной ткани должны иметь вытянутую форму и фиксироваться на опорных образованиях (костях, хрящах, коже, волокнистой соединительной ткани и т.п.). В различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статистические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы. Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или наконец, проводить тренировки с постепенным уменьшением нагрузки. Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. Эксперименты показали, что нагрузки преимущественно статистического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пунктами увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом. При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше. Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным. Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4-5 раз больше, чем в мышцах выполняющих преимущественно статистическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу. При пониженной нагрузке мышцы становятся дряблыми, уменьшаются в объеме, капилляры их суживаются, в результате чего мышечные волокна истощаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц. При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. По наблюдениям П.З. Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение числа мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два-три и более тонких, вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно-два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную мышечную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся. Важное практическое значение при перетренированности имеет двигательный режим. Установлено, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту. Так, в показателях силы мышц верхних конечностей (мышц-сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и ручном мяче, по сравнению с лыжниками-гонщиками, и велосипедистами. В силе мышц-сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмечаются в силе мышц-разгибателей, причем лучший показатель у хоккеистов (73кг), несколько хуже у гандболистов (69кг), лыжников (60кг) и велосипедистов (57кг). У не занимающихся спортом этот показатель составляет всего 48кг. Показатели силы мышц нижних конечностей также различны у занимающихся различными видами спорта. Величина силы разгибателей голени больше у гандболистов (77кг) и хоккеистов (71кг), меньше у лыжников-гонщиков (64кг),еще меньше у велосипедистов (63кг). в силе мышц-разгибателей бедра большое преимущество у хоккеистов (177кг), тогда как у гандболистов, лыжников и велосипедистов существенных различий в силе этой группы мышц нет (139 - 142кг). Особенно интересны различия в силе мышц-сгибателей стопы и разгибателей туловища, способствующих в первом случае отталкиванию, а во втором - удержанию позы. У хоккеистов показатели силы мышц-сгибателей стопы составляют 187кг, у велосипедистов - 176кг, у гандболистов - 146кг. Сила мышц-разгибателей туловища у гандболистов равна 184кг, у хоккеистов - 177кг, а у велосипедистов - 149кг. Все эти особенности связаны с неодинаковым биохимическими условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы «ведущих» групп мышц. III. ВЛИЯНИЕ ЗАНЯТИЙ СПОРТОМ НА СОСТОЯНИЕ СКЕЛЕТНОЙ МУСКУЛАТУРЫ Скелетная мускулатура - главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опорой для скелета. Например, при патологических искривлениях позвоночника, деформациях грудной клетки (а причиной тому бывает слабость мышц спины и плечевого пояса) затрудняется работа легких и сердца, ухудшается кровоснабжение мозга и т. д. Тренированные мышцы спины укрепляют позвоночный стол, разгружают его, беря часть нагрузки на себя, предотвращают "выпадение" межпозвоночных дисков, соскальзывание позвонков. Под влиянием усиленной мышечной деятельности в скелете спортсмена происходят существенные изменения. На состояние скелета оказывают влияние и другие факторы, связанные с занятием спортом: характерное положение тела спортсмена (у велосипедистов, конькобежцев, боксеров, гребцов и т.д.), сила давления на скелет (у тяжелоатлетов), сила растяжения при висах, при скручивании тела (у акробатов, гимнастов, фигуристов и др.) при правильном дозированных нагрузках эти изменения обычно бывают благоприятными. В противном случае возможны патологические изменения скелета. Наиболее простой механизм возникновения у спортсменов изменения скелета можно представить следующим образом. Под влиянием усиленной мышечной деятельности происходит рефлекторное расширение кровеносных сосудов, улучшается питание работающего органа, прежде всего мышц, а затем и близлежащих органов, в частности кости со всеми ее компонентами (надкостница, компактный слой, губчатое вещество, костномозговая полость, хрящи, покрывающие суставные поверхности костей и др.). Занятия физическими упражнениями способствуют лучшему питанию и кровоснабжению мышц. Известно, что при физическом напряжении не только расширяется просвет бесчисленных мельчайших сосудов (капилляров), пронизывающих мышцы, но и увеличивается их количество. Так, в мышцах людей, занимающихся физической культурой и спортом, количество капилляров значительно больше, чем у нетренированных, а следовательно, у них кровообращение в тканях и головном мозге лучше. Все изменения в скелете появляются постепенно. Через год занятий спортом можно наблюдать отчетливо выраженные морфологические изменения костей. В дальнейшем эти изменения стабилизируются, но перестройка скелета происходит на протяжении всего тренировочного процесса. При прекращении активной спортивной деятельности приспособительные изменения костей остаются довольно продолжительное время. Изменения, происходящие в скелете под влиянием занятий спортом, касаются и химического состава костей, и внутреннего их строения, и процессов роста и окостенения. Кости, несущие большую нагрузку, богаче солями кальция, чем кости, несущие меньшую нагрузку. На рентгенограммах кости спортсменов имеют более четкий рисунок, чем кости не спортсменов, что объясняется большей оссификацией костной ткани, лучшим насыщением ее минеральными солями. Под влиянием занятий спортом изменяется внешняя форма костей. Они становятся массивнее и толще за счет увеличения костной массы. Все выступы, гребни, шероховатости выражены резче. Эти изменения зависят от вида спорта. Так, у тяжелоатлетов кости массивнее, чем у пловцов, особенно в верхнем отделе скелета и верхних конечностях. Изменение внутреннего состава кости под влиянием занятий спортом выражаются, в частности, в утолщении ее компактного вещества. Причем утолщение обычно больше в тех костях, на которые падает нагрузка. Но изменения компактного вещества также может происходить и без его утолщения, без изменения диаметра кости. В связи с утолщение компактного вещества костномозговая полость уменьшается. При больших статистических нагрузках она уменьшается почти до полного зарастания Губчатое вещество кости также претерпевает определенные изменения. Под влиянием усиленной нагрузки на кость перекладины губчатого вещества становятся толще, крупнее, ячейки между ними больше (в старшем возрасте ячейки тоже становятся больше, но перекладины тоньше). Переломы у спортсменов срастаются быстрее. Суставной хрящ, покрывающий суставные поверхности костей, может утолщаться, что усиливает его амортизационные свойства и уменьшает давление на кость. IV. ОСОБЕННОСТИ ВЛИЯНИЯ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ Физическая работа делится на два вида: динамическую и статическую. Динамическая работа выполняется тогда, когда в физическом смысле происходит преодоление сопротивления на определенном расстоянии. В этом случае (например, при езде на велосипеде, подъеме на лестницу или в гору) работа может быть выражена в физических единицах (1 Вт = 1 Дж/с = 1 Нм/с). При положительной динамической работе мускулатура действует как «двигатель», а при отрицательной динамической работе она играет роль «тормоза» (например, при спуске с горы). Статическая работа производится при изометрическом мышечном сокращении. Так как при этом не преодолевается никакое расстояние, в физическом смысле это не работа; тем не менее, организм реагирует на нагрузку физиологически напряженней. Проделанная работа в этом случае измеряется как произведение силы и времени. Физическая активность вызывает немедленные реакции различных систем органов, включая мышечную, сердечно-сосудистую и дыхательную. Эти быстрые адаптационные сдвиги отличаются от адаптации, развивающейся в течение более или менее длительного срока, например в результате тренировок. Величина быстрых реакций служит, как правило, непосредственной мерой напряжения. Во время легкой работы с постоянной нагрузкой частота сокращений сердца возрастает в течение первых 5-10 мин и достигает постоянного уровня; это стационарное состояние сохраняется до завершения работы даже в течение нескольких часов. Во время тяжелой работы, выполняемой с постоянным усилием, такое стабильное состояние не достигается; частота сокращений сердца увеличивается по мере утомления до максимума, величина которого неодинакова у отдельных лиц (подъем, обусловленный утомлением). Даже после завершения работы частота сердечных сокращений изменяется в зависимости от имевшего место напряжения. После легкой работы она возвращается к первоначальному уровню в течение 3-5 мин; после тяжелой работы период восстановления значительно дольше - при чрезвычайно тяжелых нагрузках он достигает нескольких часов. Другим критерием может служить общее число пульсовых ударов свыше начальной частоты пульса в течение периода восстановления; этот показатель служит мерой мышечного утомления и, следовательно, отражает нагрузку, потребовавшуюся для выполнения предшествующей работы. Ударный объем сердца в начале работы возрастает лишь на 20- 30%, а после этого сохраняется на постоянном уровне. Он немного падает лишь в случае максимального напряжения, когда частота сокращений сердца столь велика, что при каждом сокращении сердце не успевает целиком заполниться кровью. Как у здорового спортсмена с хорошо тренированным сердцем, так и у человека, не занимающегося спортом, сердечный выброс и частота сокращений сердца при работе изменяются приблизительно пропорционально друг другу, что обусловлено этим относительным постоянством ударного объема. При динамической работе кровяное артериальное давление изменяется как функция выполняемой работы. Систолическое давление увеличивается почти пропорционально выполняемой нагрузке, достигая приблизительно 220 мм рт. ст. при нагрузке 200 Вт. Диастолическое давление изменяется лишь незначительно, чаще в сторону снижения. В системе кровообращения, функционирующей под низким давлением (например, в правом предсердии) давление крови во время работы увеличивается мало; отчетливое его повышение в этом участке является патологией (например, при сердечной недостаточности). Потребление организмом кислорода возрастает пропорционально величине и эффективности затрачиваемых усилий. При легкой работе достигается стационарное состояние, когда потребление кислорода и его утилизация эквивалентны, но это происходит лишь по прошествии 3-5 мин, в течение которых кровоток и обмен веществ в мышце приспосабливаются к новым требованиям. До тех пор пока не будет достигнуто стационарного состояния, мышца зависит от небольшого кислородного резерва, который обеспечивается 02, связанным с миоглобином, и от способности извлекать больше кислорода из крови. При тяжелой мышечной работе, даже если она выполняется с постоянным усилием, стационарное состояние не наступает; как и частота сокращений сердца, потребление кислорода постоянно повышается, достигая максимума. С началом работы потребность в энергии увеличивается мгновенно, однако для приспособления кровотока и аэробного обмена требуется некоторое время; таким образом, возникает кислородный долг. При легкой работе величина кислородного долга остается постоянной после достижения стационарного состояния, однако при тяжелой работе она нарастает до самого окончания работы. По окончании работы, особенно в первые несколько минут, скорость потребления кислорода остается выше уровня покоя происходит «выплата» кислородного долга. Однако этот термин не точен, так как увеличение потребления кислорода после завершения работы не отражает непосредственно процессы восполнения запасов 02 в мышце, а происходит и за счет влияния других факторов, таких, как увеличение температуры тела и дыхательная работа, изменение мышечного тонуса и пополнение запасов кислорода в организме. Таким образом, долг, который будет возвращен, по величине больше, чем возникший во время самой работы. После легкой работы величина кислородного долга достигает 4 л, а после тяжелой может доходить до 20 л. Во время легкой динамической работы минутный объем дыхания, как и сердечный выброс, увеличивается пропорционально потреблению кислорода. Это увеличение возникает в результате нарастания дыхательного объема и частоты дыхания. Во время и после динамической работы кровь претерпевает существенные изменения. По ним лишь изредка можно действительно оценить степень физического напряжения, но особое значение их состоит в том, что они служат источниками ошибок при лабораторной диагностике. Во время легкой физической работы у здорового человека выявляются лишь незначительные изменения в парциальном давлении СО2 и О2 в артериальной крови. Тяжелая работа вызывает более существенные изменения. Наибольшие отклонения от уровня покоя составляют 8% для артериального давления О2, и 10% - для давления СО2. Насыщение кислородом смешанной венозной крови падает с ростом напряжения; соответственно этому артериовенозная разница по кислороду увеличивается от значения, приблизительно равного 0,05 (уровень покоя), до 0,14 у нетренированных и 0,17 у тренированных лиц. Это увеличение обусловлено повышенным извлечением кислорода из крови в работающей мышце. При физической работе показатель гематокрита увеличивается как в результате снижения объема плазмы (в связи с усиленной капиллярной фильтрацией), так и за счет поступления эритроцитов из мест их образования (при этом увеличивается доля незрелых форм). Отмечено также нарастание числа лейкоцитов (рабочий лейкоцитоз). Отмечено, что число лейкоцитов в крови бегунов на длинные дистанции увеличивается пропорционально длительности бега на 5000-15000 клеток/мкл в зависимости от работоспособности (меньше у лиц с высокой работоспособностью). Увеличение происходит преимущественно за счет возрастания количества нейтрофильных гранулоцитов, так что при этом численное соотношение клеток разных типов меняется. Кроме того, пропорционально интенсивности работы увеличивается число тромбоцитов. Легкая физическая работа не влияет на кислотно-щелочное равновесие, так как все избыточное количество образующейся углекислоты выделяется через легкие. Во время тяжелой работы развивается метаболический ацидоз, степень которого пропорциональна скорости образования лактата; частично он компенсируется за счет дыхания (снижение артериального рСО2). Уровень глюкозы в артериальной крови у здорового человека мало изменяется во время работы. Только при тяжелой и длительной работе происходит падение концентрации глюкозы в артериальной крови, что указывает на приближающееся истощение. Вместе с тем концентрация лактата в крови варьирует в широких пределах в зависимости от степени напряжения и длительности работы - соответственно скорости образования лактата в мышце, функционирующей в анаэробных условиях, и скорости его элиминации. Лактат разрушается или подвергается превращениям в неработающих скелетных мышцах, жировой ткани, печени, почках и миокарде. В условиях покоя концентрация лактата в артериальной крови составляет приблизительно 1 ммоль/л; при тяжелой работе длительностью около получаса или при крайне тяжелых кратковременных нагрузках с минутными интервалами могут быть достигнута максимального уровня, превышающая 15 моль/л. При тяжелой длительной работе концентрация лактата сначала увеличивается, а затем падает. ЗАКЛЮЧЕНИЕ Я считаю эту тему весьма актуальной в наше время. Повышение уровня механизации трудовых процессов привело к уменьшению объема физического труда. У людей, занимающихся спортом, нет проблем со здоровьем: не повышается кровяное давление, у них улучшаются обменные процессы, улучшается вентиляционная способность легких, они менее подвержены стрессу, лучше спят, выглядят. Физические упражнения задерживают процесс старения, сохраняют нормальную работоспособность. Воспитание физических качеств способствует развитию физической и умственной работоспособности, более полной реализации творческих сил человека в интересах общества. Познание себя самого является необходимым условием обеспечения жизнедеятельности специалиста в условиях современных воздействий внешней среды. Формирование физической культуры личности немыслимо без умения рационально корректировать свое состояние средствами физической культуры и двигательной деятельности. Движения играют существенную роль во взаимодействии человека с внешней средой. Выполняя разнообразные и сложные движения, человек может осуществлять трудовую деятельность, общаясь с другими людьми, заниматься спортом и т.д. При этом организм получает более высокую способность к сохранению постоянства внутренней среды при изменяющихся внешних воздействиях: температуры, влажности, давления, силы воздействия солнечной радиации. Под воздействием физической тренировки происходит неспецифическая адаптация организма человека к разнообразным проявлениям факторов внешней среды. Таким образом, можно сделать вывод, что двигательная функция - основная функция человеческого организма, которую следует постоянно совершенствовать для повышения работоспособности в любом виде деятельности, в том числе и умственной. Комплексное использование средств, методов и форм организации занятий с детьми с ослабленным состоянием здоровья не только способствует укреплению здоровья, повышению умственной и физической работоспособности, но и содействует формированию здоровья личности. БИБЛИОГРАФИЧЕСКИЙ СПИСОК 1. Аксельрод С.Л. Спорт и здоровье. - М.: Физкультура и спорт, 1988 2. Бойко В.В. Целенаправленное развитие двигательных способностей человека. - М.: Физкультура и спорт, 1987 3. Волков В.М. К проблеме развития двигательных способностей // Теория и практика физической культуры. - М.: Физкультура и спорт, 1993.- №5-6. 4. Воробьева Е.А., Губарь А.В., Сафьянникова Е.Б. Анатомия и физиология, - М.: Медицина, 1975. 5. Зациорский В.М. Физические качества спортсмена. - М.: Физкультура и спорт, 1970. 6. Коренберг В.Б. Проблема физических и двигательных качеств // Теория и практика физической культуры. - М.: Физкультура и спорт, 1996. - №7. 7. Матвеева Л.П., Новикова А.Д. Теория и методика физического воспитания: Учеб. для институтов физ. культуры / Под общ. ред. Матвеева Л.П. - Т.1. Общие основы теории и методики физического воспитания. - М.: Физкультура и спорт, 1976. 8. Под редакцией Коваленко В.А., Физическая культура: Учебное пособие - Изд-во АСВ, 2000 9. Орешкин Ю.А. К здоровью через физкультуру. - Москва, Физкультура и спорт, 1990 10. Физическое воспитание учащихся I-XI классов с направленным развитием двигательных способностей // Физическая культура в школе. - М.: Физкультура и спорт, 1994. 11. А. Н. Воробьев. Семья спортивная. Москва, 1987. |