Главная страница

теплоотдача. Рекуперативные теплообменные аппараты


Скачать 3.22 Mb.
НазваниеРекуперативные теплообменные аппараты
Анкортеплоотдача
Дата28.03.2022
Размер3.22 Mb.
Формат файлаdocx
Имя файлаTeploobmenny_apparat_UP (3).docx
ТипУчебное пособие
#421201
страница3 из 16
1   2   3   4   5   6   7   8   9   ...   16

1.3 Рекуперативные теплообменные аппараты


Рекуперативные теплообменные аппараты — это установки, работающие в периодическом или в стационарном тепловом режиме. Аппараты периодического действия обычно представляют собой сосуды большой вместимости, которые через определенные промежутки времени заполняют обрабатываемым материалом или одним из теплоносителей, нагревают или охлаждают его, а затем удаляют. В стационарном режиме работают, как правило, аппараты непрерывного действия. Конструкции современных рекуперативных теплообменных аппаратов весьма разнообразны и предназначены для работы с теплоносителями типов жидкость-жидкость, пар-жидкость, газ-жидкость.

1.3.1 Кожухотрубные теплообменные аппараты


Значительно чаще используются теплообменные аппараты непрерывного действия, среди которых наибольшее распространение получили кожухотрубчатые теплообменники (рис. 1). Кожухотрубные теплообменники представляют собой аппараты, выполненные из пучков труб, скрепленных при помощи трубных решеток и ограниченных кожухами и крышками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них разделено перегородками на несколько ходов.

В кожухотрубчатых теплообменниках обычно применяют трубы внутренним диаметром не менее 12 мм и не более 38 мм, так как при увеличении диаметра труб значительно снижается компактность теплообменника и возрастает его металлоемкость.

Длина трубного пучка колеблется от 0,9 до 5...6 м. Толщина стенки труб — от 0,5 до 2,5 мм. Трубные решетки служат для закрепления в них труб при помощи развальцовки, запайки или сальниковых соединений. Кожух аппарата представляет собой цилиндр, сваренный из одного или нескольких стальных листов. Он снабжен фланцами, к которым болтами крепятся крышки. Толщина стенки кожуха определяется максимальным давлением рабочей среды и диаметром аппарата, но не делается тоньше 4 мм. Из-за различия температур греющей и нагреваемой сред кожух и трубы работающего аппарата также имеют различные температуры. Для компенсации напряжений, возникающих в результате различия температурных расширений труб и кожуха, применяют линзовые компенсаторы, U- и W-образные трубы, теплообменники с плавающими камерами (рис. 1).


Рис. 1 - Кожухотрубчатые рекуперативные теплообменные аппараты: а, б - с жестким креплением труб в трубных решетках; в - с линзовыми компенсаторам корпусе; г, д - с U- и W-образными трубками; е - с нижней плавающей распределительной камерой
 

Кожухотрубчатый теплообменник состоит из распределительной камеры, оснащенной патрубками, цилиндрического кожуха, трубных решеток и пучка труб (рис.2). Конструкция дополнена крышками с торцов и опорами для размещения на горизонтальном основании или креплениями при другой ориентации в пространстве.

Рис.2 – Конструктивные элементы кожухотрубчатых теплообменников

Согласно ГОСТ 9929–82 кожухотрубчатые теплообменные изделия выпускаются диаметром от 15,9 см до 300 см и выдерживают давление в диапазоне от вакуума до 160 кгс/см². В длину аппарат может быть от нескольких сантиметров до 8–9 метров.

Поверхность теплообмена может достигать нескольких тысяч квадратных метров.

Изделия выпускаются следующих видов:

Н – с неподвижно встроенными трубчатыми решетками;

К – с температурным компенсатором;

П – с плавающей головкой;

У – с U-образной формой трубчатых элементов;

ПК – комбинированная, оснащена плавающей головкой со встроенным компенсатором.

Кожухотрубчатые теплообменники с неподвижными трубными решетками имеют жесткую конструкцию компонентов. Они наиболее распространены в нефтегазовой отрасли и химической промышленности. Этот вид занимает 75% всего рынка кожухотрубчатых теплообменников. Отличительной особенностью этого вида является то, что теплообменные трубы жестко скреплены с трубными решетками (развальцованы), которые в свою очередь, приварены к внутренней стенке корпуса. В связи с этим исключена возможность взаимных перемещений элементов в распределительной камере.

Для подачи и отвода теплоносителя труб и межтрубного пространства, а также отвода конденсата изделия оборудуются штуцерами или другой трубопроводной арматурой, выходящей наружу теплообменника. Интенсивность теплоотдачи при поперечном перемещении потока выше, поэтому его направляют по зигзагообразной траектории. Для этого устанавливают поперечные перегородки, они не примыкают к внутренней поверхности кожуха, оставляя зазор для перемещения потока. Для сосредоточения потока ближе к пучку труб, специальными пластинами сужают рабочее пространство камеры.



Рис. 3 – Кожухотрубный теплообменник с плавающей головкой

1 – крышка кожуха, 2 – распределительная камера, 3 – кожух, 4 – трубы трубного пучка, 5 – перегородка, 6 – полукольцо плавающей головки, 7 – подвижная трубная решетка, 8 – внутренняя крышка плавающей гловки, 9 – крышка наружная

В кожухотрубном теплообменнике с компенсатором на корпусе тепловые удлинения компенсируются продольным сжатием или удлинением гибких вставок и расширителей. Такие аппараты применяются при избыточной деформации компенсатора в пределах 10–15 мм. В такой полужесткой конструкции могут применяться линзовые, сальниковые или сильфонные компенсаторы для компенсации температурных удлинений и перекоса труб.

Более совершенной считается конструкция аппарата с плавающей головкой (рис.3) . Одна из трубных досок крепится жестко, другая решетка свободно перемещается вместе с трубной системой. Плавающей готовкой называют подвижную решетку с крышкой, которой она оснащена. Некоторое удорожание аппарата ввиду увеличения диаметра корпуса и дополнительного днища оправдывается большей надежностью в эксплуатации.

В изделии с U-образными трубами (рис 4) оба конца трубного пучка закреплены на одной трубной решетке, труба изогнута петлей на 180° радиусом 4d или больше. Это позволяет трубам свободно удлиняться в сторону изгиба трубного пучка.



Рис.4 – Схема теплообменника с U образными трубками
С целью интенсификации теплообмена увеличивают скорость теплоносителей с низким коэффициентом теплоотдачи, для чего теплообменники по теплоносителю, проходящему в трубах, делают двух-, четырех- и многоходовыми, а в межтрубном пространстве устанавливают сегментные или концентрические поперечные перегородки (рис. 1).

1.3.2Змеевиковые теплообменники


Если перепады давления между греющей и нагреваемой средами в аппарате достигают 10 МПа и более, применяют змеевиковые теплообменники с витыми трубами (рис. 5, а), концы которых вваривают в распределительные коллекторы или в меньшие по размерам, чем в кожухотрубных аппаратах, трубные решетки. Эти аппараты более компактны, а также позволяют обеспечить более высокие скорости и коэффициенты теплоотдачи от теплоносителя, движущегося в трубах, в случае малых его расходов.

1.3.3. Секционные теплообменники 


Секционные теплообменники (рис. 5, б), как и кожухотрубчатые, применяют в самых различных областях. Они характеризуются меньшим, чем в кожухотрубчатых аппаратах, различием скоростей в межтрубном пространстве и в трубах при равных расходах теплоносителей. Из них удобно подбирать необходимую площадь поверхности нагрева и изменять ее в случае необходимости. Однако у секционных теплообменников велика доля дорогостоящих элементов — трубных решеток, фланцев, переходных камер, калачей, компенсаторов и т. п.; выше расход металла на единицу поверхности нагрева, больше длина пути теплоносителей, а следовательно, больше расход электроэнергии на их прокачку. В случае малых тепловых мощностей секции выполняют по типу теплообменников «труба в трубе», у которых в наружную трубу вставлена единственная внутренняя труба меньшего диаметра (рис. 2, в).

Разборные многопоточные теплообменники «труба в трубе» нашли применение в технологических установках заводов нефтяной, химической, газовой и других отраслей промышленности при температурах от - 40 до +450 °С и давлениях до 2,5...9,0 МПа. Для улучшения теплообмена трубы могут иметь продольные ребра или поперечную винтовую накатку.



Рис. 5 – Змеевиковые и секционные рекуперативные теплообменные аппараты: а — с витой трубчатой поверхностью нагрева (змеевиковый); б — секционный; в — «труба в трубе»

1.3.4. Спиральные теплообменники


Спиральные теплообменники – аппараты, в которых каналы для теплоносителей образованы двумя свернутыми в спирали на специальном станке листами (рис. 6). Расстояние между ними фиксируется приваренными бобышками или штифтами. В соответствии с ГОСТ 12067–80 навивку спиральных теплообменников производят из рулонной стали шириной от 0,2 до 1,5 м с поверхностями нагрева от 3,2 до 100 м2 при расстоянии между листами от 8 до 12 мм и толщине стенок 2 мм для давления до 0,3 МПа и 3 мм – до 0,6 МПа. Зарубежные фирмы изготовляют специальные теплообменники из рулонного материала (углеродистых и легированных сталей, никеля, титана, алюминия, их сплавов и некоторых других) шириной от 0,1 до 1,8 м, толщиной от 2 до 8 мм при расстоянии между листами от 5 до 25 мм. Поверхности нагрева составляют от 0,5 до 160 м2.


Рис. 6 – Спиральный теплообменник: а – принципиальная схема спирального теплообменника; б – способы соединения спиралей с торцевыми крышками
Спиральные теплообменники устанавливают по штуцерам горизонтально и вертикально. Их часто монтируют блоками по два, четыре, восемь аппаратов и применяют для нагревания и охлаждения жидкостей и растворов. Вертикальные аппараты используют также для конденсации чистых паров и паров из парогазовых смесей. В последнем случае на коллекторе для конденсата имеется штуцер для удаления неконденсирующегося газа.

1.3.5. Пластичные теплообменники



Пластичные теплообменники (рис. 7, а, б) имеют щелевидные каналы, образованные параллельными пластинками. В простейшем случае пластины могут быть плоскими. Для интенсификации теплообмена и повышения компактности пластинам при изготовлении придают различные профили (рис. 4, в, г), а между плоскими пластинами помещают профилированные вставки. Первые профилированные пластины изготовлялись из бронзы фрезерованием и отличались повышенной металлоемкостью и стоимостью. В настоящее время пластины штампуют из листовой стали (углеродистой, оцинкованной, легированной), алюминия, мельхиора, титана и других металлов и сплавов. Толщина пластин – от 0,5 до 2 мм. Поверхность теплообмена одной пластины – от 0,15 до 1,4 м2, расстояние между пластинами – от 2 до 5 мм.

Рис. 7 – Пластинчатые теплообменники: а — пластинчатый воздухоподогреватель; б — разборный пластинчатый теплообменник для тепловой обработки жидких сред; в — гофрированные пластины; г — профили каналов между пластинами; I, II — вход и выход теплоносителя

Теплообменники делаются:

а) разборными;

б) неразборными.

В разборных аппаратах герметизацию каналов обеспечивают с помощью прокладок на основе синтетических каучуков. Их целесообразно применять при необходимости чистки поверхностей с обеих сторон. Они выдерживают температуры в диапазоне от -20 до 140...150 °С и давления не более 2...2,5 МПа. Неразборные пластинчатые теплообменники выполняют сварными. Они могут работать при температурах до 400 °С и давлениях до 3 МПа. Из попарно сваренных пластин изготовляют полуразборные теплообменники. К аппаратам этого же типа относятся блочные, которые набирают из блоков, образованных несколькими сваренными пластинами. Пластинчатые теплообменные аппараты применяют для охлаждения и нагревания жидкостей, конденсации чистых паров и паров из парогазовых смесей, а также в качестве греющих камер выпарных аппаратов.

1.3.6 Ребристые теплообменники 


Ребристые теплообменники (рис. 8) применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоносителей значительно ниже, чем для второго. Поверхность теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи увеличивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. Из рис. 5 (е...и) видно, что ребристые теплообменники изготовляют самых различных конструкций. Ребра выполняют поперечными, продольными, в виде игл, спиралей, из витой проволоки и т. д.

Трубы с наружным и внутренним продольным оребрением изготовляют методами литья, сварки, вытяжкой из расплава через фильеру, выдавливанием металла, нагретого до пластического состояния, через матрицу. Для закрепления ребер на трубах и пластинах используют также гальванические покрытия, покраску. Для повышения эффективности ребер их изготовляют из более теплопроводных, чем стальные трубы, материалов: меди, латуни, чаще из алюминия. Однако из-за нарушения контакта между ребром или ребристой рубашкой и стальной несущей трубой биметаллические трубы применяют при температурах не выше 280 °С, трубы с навивным оребрением — до 120 °С; навивные завальцованные в канавку ребра выдерживают температуру до 330 °С, но быстро корродируют у основания в загрязненном воздухе и других агрессивных газах.

Рис. 8 – Типы ребристых теплообменников: а – пластинчатый; б – чугунная трубка с круглыми ребрами; в – трубка со спиральным оребрением; г – чугунная трубка с внутренним оребрением; д – плавниковое оребрение трубок; е – чугунная трубка с двухсторонним игольчатым оребрением; ж – проволочное (биспиральное) оребрение трубок; з – продольное оребрение трубок; и –многоребристая трубка

1   2   3   4   5   6   7   8   9   ...   16


написать администратору сайта