компьютерное моделирование. 1 лекция. Решение на них задач производится с целью получения неизвестных ранее данных, предсказания новых свойств и будущих поведений, извлечения пользы при реализации решений
Скачать 169.35 Kb.
|
1 2
Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований. Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина: изучает способы решения задач, то есть является инженерной наукой; является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области. Смежными моделированию предметами являются: программирование, математика, исследование операций. Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно. Какова разница между алгоритмом и моделью? Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения. Итак: модель + вопрос + дополнительные условия = задача. Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований. Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели. Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует. В зависимости от носителя различают модели: натурные, мысленные, математические, имитационные, графические, фотографические и так далее. Каждая из моделей обладает различной способностью к прогнозу свойств объекта. Например, по фотографии человека в анфас вряд ли можно верно представить, как выглядит его затылок. Приближение в виде трёхмерной модели — намного лучше, но можно ли с её помощью определить, когда, например, у виртуального человека вырастут волосы длиной 50 см? Имитационная модель ещё более информативна. Но наибольшей ценностью обладают модели, пригодные для решения задач, то есть обладающие прогностическими свойствами, умеющие отвечать на вопросы. Следует различать два понятия — «модель» и «задача». Модель связывает переменные между собой законами. Эти законы действуют независимо от того, какая сейчас задача стоит перед нами. Модель объективна, она подобна миру, который нас окружает, и содержит в себе информацию об этом. Структура мира (в общем смысле) неизменна, фундаментальна, модель, следовательно, тоже. А человек, как существо субъективное, имеющее собственные цели, часто меняющиеся желания, ставит, в зависимости от своих потребностей, каждый раз новые задачи, требует решить возникающие у него проблемы. Он ставит вопросы к окружающему миру, с законами которого нельзя не считаться. Удобно ставить вопросы к модели, которая содержит нужную информацию о мире. Поэтому задача — это совокупность вопроса и модели. Можно к модели задавать все новые и новые вопросы и при этом не менять модель, но менять задачу. То есть модель — способ нахождения ответов на вопросы. Чтобы ответить на поставленный вопрос, модель должна быть преобразована по правилам, обеспечивающим её эквивалентность, к виду, соответствующему ответу на вопрос. Это означает, что модель должна быть сформирована по правилам определённой алгебры (алгебра есть правила преобразования). А процедура, которая помогает применить такие правила к модели, называется методом. Рассмотрим пример. Модель падения тела под углом к горизонту содержит информацию о координатах траектории, заданных в осях (x, y): y = –x2 + 4 · x – 3 (координаты тела в полете) — см. рис. 1.5.
Модель связывает две переменные y и x законом f(y, x) = 0. Модель может быть расширена некоторыми исходными данными, например, так: y = –x2 + 4 · x – 3, y = 0 (интересуют не все возможные значения y, а только точки на поверхности Земли). y = 0 — это тоже закон, но более мелкого масштаба. Такие уравнения могут появляться и исчезать в зависимости от исследуемой проблемы. Обычно их называют гипотезами. Вопрос: x = ? Теперь модель и вопрос вместе образовали задачу:
Трактовать задачу можно так: при каких значениях x тело окажется на поверхности Земли? Модель подразумевает, что исследователь может решать с её помощью прямые и обратные задачи. Прямая задача не требует алгебраических преобразований, достаточно только арифметических подстановок: x = 2, y = –x2 + 4 · x – 3, y = ?. Ответ: y = 1. То есть, если на вход модели подать значение 2, то на выходе модели будет значение 1 — см. рис. 1.6.
Обратная задача: y = 0, y = –x2 + 4 · x – 3, x = ? Ответ: x = 1, x = 3. То есть ответ говорит: чтобы на выходе модели обеспечить значение 0, надо, чтобы на вход модели было подано значение 1 (или 3). И в первом, и во втором случае мы в разной мере преобразовывали модель, но всегда так, чтобы на входе у неё была известная величина, а на выходе — неизвестная. В первом варианте y := –x2 + 4 · x – 3. Во втором варианте модель преобразуется к виду: 0 = –x2 + 4 · x – 3. Здесь мы опустили ряд преобразований, известных из курса средней школы, а именно:
Преобразования происходили с учётом правил алгебры. Если бы правила алгебры были нам неизвестны, то решить обратную задачу нам бы не удалось. А значит, не удалось бы ответить на поставленный вопрос: «x = ?». Способность модели преобразовываться с помощью алгебры даёт возможность в дальнейшем использовать её многократно для решения различных задач, делать на ней прогнозы. Сравните: телефонный справочник — это тоже своеобразная модель, но какие прогнозы вы можете сделать, какие обратные задачи решить? Как вычислить фамилию абонента по номеру телефона? Какую алгебру вы используете? Поэтому, создавая модель, следует обязательно думать о том, какой алгеброй она будет преобразовываться. Создавать алгебру следует параллельно с моделью или использовать уже готовую алгебру и не отходить при построении модели от её правил. Ещё один тип задач, который приходится решать на моделях — задачи настройки модели. Приведём пример. При каких значениях параметра a модель y = a · x2 + 4 · x – 3 обеспечит y = 9 при x = 2? Решаем систему уравнений:
или
Далее, по правилам арифметики и алгебры, получим ответ: a = 1. От показанного на рис. 1.7 структурного изображения модели можно перейти к другому, математическому, её виду: Y = M(X).
Модель — закономерность, преобразующая входные значения в выходные. А как известно из математики, с выражением Y = M(X) можно решить три вида задач, которые приведены в табл. 1.1.
Ряд моделей может быть недоопределён — это означает, что вариантов ответов много (два, три, сто или бесконечное множество). Если нужен один ответ, то проблему надо доопределять, дополнять условиями. «Недоопределён» означает, что можно произвольно, кроме гипотез, законов, ответа, потребовать дополнительно выполнение ещё каких-то условий. Возможно, при построении модели что-то не было учтено, не хватает каких-то законов. Рецепт понятен: модель надо достроить. Но может быть и по-другому. Решений много и есть, видимо, лучшие решения, и есть похуже. Тогда для нахождения лучшего решения следует сузить область решений, накладывая определённые ограничения, чтобы отсеять остальные. Такие задачи часто называют задачами управления. Часть определений, которым надо безусловно удовлетворить, называются ограничениями. Часть определений, относительно которых высказывают только пожелания («быть как можно больше или меньше»), называются критериями. В целом получается обратная задача. А то, что надо определить — управляемая переменная. То есть интересуются: как следует изменить входной параметр (управление), чтобы обеспечить выполнение законов, не выйти за ограничения и чтобы при этом критерий принял наилучшее значение? Пример. Модель: y = –x2 + 4 · x – 3. Вопрос: x = ? Доопределение модели: y должен быть максимизирован, x ≥ 2.5. Так как y должен быть максимизирован, то мы должны стараться двигаться вверх вдоль графика функции (рис. 1.8) и следить, чтобы значение x не стало меньше 2.5. Как видно из рисунка, значение y станет максимальным при x = 2.5. Ответ: y = 0.75, x = 2.5.
Отметим, что создать модель бывает проще, чем сразу дать себе ответ на интересующий вопрос. Наверное, на практике вы замечали, что часто гораздо проще составить уравнения, чем угадать решение задачи. Например: решено разделить огромный шар размером с Землю на две половинки, полученную половинку снова поделить пополам и так далее. Попробуйте ответить на вопрос: сколько раз (n) надо провести такую операцию, чтобы размер делимой частички в результате достиг размера атома? Наверняка, сразу ответить на этот вопрос не удастся, интуиция подводит, придётся составить модель. Пусть D = 6 400 км = 6 400 000 м — диаметр шара (Земли), а d = 10–9 м — диаметр атома. Тогда модель есть выражение: 2n = D/d или 2n = 6 400 000/10–9. Отсюда получаем: 2n = 6.4 · 1015 или n = log2(6.4 · 1015). Итак, приближённо, n = 53. Неожиданный результат, не правда ли?! Можно ли было его предугадать? Ещё несколько примеров. Тривиальные модели: x = 5°; телефон друга Сидорова — 912–36–54. Такие модели не несут в себе прогностических свойств, поскольку на основе известной информации невозможно вычислить каким-либо образом другую информацию. Зная телефон одного друга Сидорова, невозможно вычислить телефон другого его друга. Это так называемые пра-модели (pra-model). Фактически это данные. Заметим, что недооценка в современных условиях понятия моделирования ведёт к использованию в АРМах коммерческого назначения только данных. Именно поэтому такие АРМы не способны решать прогностические задачи и решают, в основном, только учётные задачи (см. рис. 1.9).
Чтобы проиграть ситуацию на предприятии на будущее, узнать, к чему приведёт то или иное решение, следует в состав АРМов включать модели (см. рис. 1.10).
На рис. 1.11 показана пирамида моделей, различных по степени прогностичности.
Обратите внимание: уровень «Модель» «питается» информацией, структурированной по типу предыдущего уровня «Пра-модель», то есть она потребляет на входе данные, перерабатывает их и возвращает тоже данные, то есть модели более низкого уровня (пра-модели). Подчеркнём ещё раз, что данные — это тоже модели! Уровень «Супра-модель» потребляет на входе модели в виде объектов и операций, перерабатывает их и возвращает модели (примером таких супра-моделей могут служить грамматики, способные преобразовывать модели (уравнения). Более детально см. рис. 1.12). Данный принцип справедлив и для всех последующих (вышестоящих) уровней. Пирамида на рис. 1.11 представлена в виде функциональных уровней; это означает, что каждый последующий уровень мощнее предыдущего, то есть он позволяет получить больший, более мощный качественный результат. Модели могут принимать различную форму, в зависимости от способа мышления исследователя, его взгляда на мир, используемой алгебры. Использование различных математических аппаратов впоследствии приводит к различным возможностям в решении задач. Модели могут быть: феноменологические и абстрактные; активные и пассивные; статические и динамические; дискретные и непрерывные; детерминированные и стохастические; функциональные и объектные. Феноменологические модели сильно привязаны к конкретному явлению. Изменение ситуации часто приводит к тому, что моделью воспользоваться в новых условиях достаточно сложно. Это происходит оттого, что при составлении модели её не удалось построить с точки зрения подобия внутреннему строению моделируемой системы. Феноменологическая модель передаёт внешнее подобие. Абстрактная модель воспроизводит систему с точки зрения её внутреннего устройства, копирует её более точно. У неё больше возможностей, шире класс решаемых задач. Активные модели взаимодействуют с пользователем; могут не только, как пассивные, выдавать ответы на вопросы пользователя, когда тот об этом попросит, но и сами активируют диалог, меняют его линию, имеют собственные цели. Все это происходит за счёт того, что активные модели могут самоизменяться. Статические модели описывают явления без развития. Динамические модели прослеживают поведение систем, поэтому используют в своей записи, например, дифференциальные уравнения, производные от времени. Дискретные и непрерывные модели. Дискретные модели изменяют состояние переменных скачком, потому что не имеют детального описания связи причин и следствий, часть процесса скрыта от исследователя. Непрерывные модели более точны, содержат в себе информацию о деталях перехода. Детерминированные и стохастические модели. Если следствие точно определено причиной, то модель представляет процесс детерминировано. Если из-за неизученности деталей не удаётся описать точно связь причин и следствий, а возможно только описание в целом, статистически (что часто и бывает для сложных систем), то модель строится с использованием понятия вероятности. Распределённые, структурные, сосредоточенные модели. Если параметр, описывающий свойство объекта, в любых его точках имеет одинаковое значение (хотя может меняться во времени!), то это система с сосредоточенными параметрами. Если параметр принимает разные значения в разных точках объекта, то говорят, что он распределён, а модель, описывающая объект, — распределённая. Иногда модель копирует структуру объекта, но параметры объекта сосредоточенны, тогда модель — структурная. Функциональные и объектные модели. Если описание идёт с точки зрения поведения, то модель построена по функциональному признаку. Если описание каждого объекта отделено от описания другого объекта, если описываются свойства объекта, из которых вытекает его поведение, то модель является объектно-ориентированной. Каждый подход имеет свои достоинства и недостатки. Разные математические аппараты имеют разные возможности (мощность) для решения задач, разные потребности в вычислительных ресурсах. Один и тот же объект может быть описан различными способами. Инженер должен грамотно применять то или иное представление, исходя из текущих условий и стоящей перед ним проблемы. Приведённая выше классификация является идеальной. Модели сложных систем обычно имеют комплексный вид, используют в своём составе сразу несколько представлений. Если удаётся свести модель к одному типу, для которого уже сформулирована алгебра, то исследование модели, решение задач на ней существенно упрощается, становится типовым. Для этого модель должна быть различными способами (упрощением, переобозначением и другими) приведена к каноническому виду, то есть к виду, для которого уже сформулирована алгебра, её методы. В зависимости от используемого типа модели (алгебраические, дифференциальные, графы и т. д.) на разных этапах её исследования используются различные математические аппараты. Полный (расширенный) вариант схемы, представленной на рис. 1.13, см. на рис. 1.14. После прочтения всего курса лекций рекомендуется вернуться к рис. 1.14 и детально, на более глубоком уровне, ознакомиться с ним.
На рис. 1.15 представлены этапы построения модели.
Спираль, которая была рассмотрена на рис. 1.3, представлена на рис. 1.15 как виток. Но обратите внимание на возможность возвращения с каждого этапа на более ранний (или более ранние) при обнаружении ошибки. Спираль имеет достаточно сложный вид, прошита дополнительными связями. Конечно, моделирование, как уже было сказано, в соединении с проектированием — это технология решения проблем, задач. Но у каждой технологии все-таки есть граница, за которой она менее эффективна. Такая граница есть и здесь. Посмотрите снова на рис. 1.13. Очевидно, что первые этапы решают менее формализованные задачи, а последующие — все более формальные. Соответственно, методы первых этапов менее формализованы, а последующих — более формальные, мощные. Это означает, что самые трудные и ответственные этапы для моделировщика — первые. Здесь от него требуется больше интуитивных решений. И ошибка на более ранних этапах больше сказывается на дальнейших решениях, возвращаться и переделывать приходится гораздо больше, чем на последних этапах. Поэтому удачные решения на первых этапах вызывают пристальный интерес системотехников, наука моделирования проявляет к ним повышенное внимание. Поскольку формальные методы легко автоматизируются, то последние этапы схемы поддержаны программными продуктами и легко доступны конечным пользователям, но наибольший интерес сегодня представляют программные продукты, поддерживающие первые этапы — системы, помогающие формализовать задачи. А также системы, обеспечивающие сквозное проектирование, доведённое до моделирования и конечной реализации (автоматическое порождение кода по описанию проекта). Движемся дальше. Сложность задачи часто диктует тот способ представления модели, который будет использоваться при её описании. Покажем это на примере простейшей задачи. Задача 1. Пусть два объекта (например, пешеход и велосипедист) движутся друг другу навстречу (рис. 1.17) со скоростями V1 и V2 соответственно. Необходимо узнать: когда и где встретятся эти объекты?
1 2 |