Главная страница

Уравнения и неравенства. Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем


Скачать 23.44 Kb.
НазваниеРешение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем
АнкорУравнения и неравенства
Дата15.03.2022
Размер23.44 Kb.
Формат файлаdocx
Имя файла13.docx
ТипРешение
#398292

11. Уравнения и неравенства
Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.
Уравнения могут быть следующих видов:
— Рациональные;
— Иррациональные;
— Показательные;
— Тригонометрические;
— Логарифмические.
В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.
При решении уравнений нужно помнить основные термины:
— Корнем уравнения называют неизвестное число, которое нужно найти;
— Решение уравнения предполагает нахождение его корня;
— Уравнения, у которых совпадают решения называют равносильными;
— ОДЗ – область допустимых значений;
— Если возможно заменить переменные, то нужно это выполнить;
— После решения уравнения необходимо провести проверку на правильность нахождения корня.
Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.
Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.

Рациональным уравнением называют уравнение вида r(х)=0.
Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.
Дробно-рациональным называют уравнение, которое содержит дробное выражение.
Порядок действий при решении данного вида уравнения должен быть следующий:
— Все члены должны быть переведены в левую часть уравнения;
— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);
Решить уравнение;
— Для полученного решения нужно провести проверку, то есть.
Пример:
х2-4=(х-4)2
При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.
Далее, х2-4=х2-8х+16
8х=20
х=2,5
Рассмотрим ещё один пример решения рационального уравнения:
2х+3/5=5х
х2+6х+8=0
х+5/4=х-9/6
На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.
Иррациональные уравнения

Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.
Способы решения таких уравнений:
— Возвести в степень обе части уравнения;
— Ввести новые переменные;
Пример решения уравнения по первому способу:
8х2+16х—24=9х2-186х+961
х2-202х+985=0
х1=5, х2=197.
Пример решения по второму способу:
х=4, х2=—2.
Показательные уравнения
Показательные уравнения – уравнение, содержащее неизвестный показатель.
В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.
Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).
Виды уравнений:
Уравнение с одним основанием;
— Уравнение с равными основаниями.
Существует следующие способы решения таких уравнений:
— Уравнять показатели;
— Использовать метод логарифмов;
— Привести уравнение к квадратному виду;
— Вынести за скобку общий множитель;
— Ввести новую переменную.
Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.
Рассмотрим наиболее простой пример решения показательного уравнения:
2х=4
Для решения данного уравнения следует 2 возвести во вторую степень.
х=2.
Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.
Тригонометрические уравнения

Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.
Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.
Способы решения таких уравнений:
— Решение с помощью форму и приведение к простейшему;
— Ввод других переменных;
— Разложить уравнение по множителям.
Пример решения тригонометрического уравнения:
sin x= ½.
Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.
Также рассмотрим пример решения уравнения, разложив его по множителям.
sin2 — sinx = 0.
Нужно применить формулу sin2x = 2sinxcosx.
2sinxcosx – sinx = 0.
sinx (2cosx – 1) = 0.
Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.
Далее, sinx=0, x=пk.
2cos x-1=0, cos=1/2.
Логарифмические уравнения


написать администратору сайта