Главная страница
Навигация по странице:

  • Рисунок 1.5 Реализация принципа компенсации возмущения

  • Рисунок 1.6 Функциональная схема управления САУ

  • Классификация САУ

  • Рисунок 1.7 Системы автоматического управления

  • ФУНКЦИОНАЛЬНЫЕ ЭЛИМЕНТЫ АВТОМАТИЧЕСКИХ УСТРОЙСТВ

  • Рисунок 2.1 Структурная схема релейной защиты турбогенератора (ТГ) от токов КЗ

  • Математическое описание элементов систем

  • Особенности следящих систем

  • Рисунок 2.2 Блок-схема следящего привода

  • Курсовая. Система автоматического управления (сау) поддерживает или улучшает функционирование управляемого объекта. В ряде случаев вспомогательные для сау операции (пуск, остановка, контроль, наладка и т д


    Скачать 0.97 Mb.
    НазваниеСистема автоматического управления (сау) поддерживает или улучшает функционирование управляемого объекта. В ряде случаев вспомогательные для сау операции (пуск, остановка, контроль, наладка и т д
    Дата20.12.2019
    Размер0.97 Mb.
    Формат файлаdocx
    Имя файлаКурсовая.docx
    ТипДокументы
    #101358
    страница3 из 4
    1   2   3   4

    Рисунок 1.4 Функциональная схема управления САУ
    Напряжение на выходе генератора UГ – пропорционально суммарному магнитному потоку. Увеличение или уменьшение тока нагрузки зависит от сопротивления нагрузки. Такое изменение тока нагрузки не окажет никакого влияния на выходное напряжение генератора, т.к. ток нагрузки пропорционален магнитному потоку Ф2 и компенсирует изменение Ф1, т.е. значение суммарного потока постоянно при любых колебаниях нагрузки. Такой принцип носит название принципа управления по нагрузки.



    Рисунок 1.5 Реализация принципа компенсации возмущения
    Принцип комбинированного управления. Данный принцип реализуется путем совмещения двух принципов: Принцип управления по отклонению, и принцип управления по возмущению.

    Совмещение этих двух принципов дает возможность улучшить качество управления, т.е. предписанное значение регулируемой величины будет более точно с меньшей погрешностью воспроизводиться на выходе системы.

    Рисунок 1.6 Функциональная схема управления САУ
    В конструкции САУ должен быть предусмотрен комплекс средств, направленных на повышение ее надежности и отказ в безопасности. Мероприятия по повышению безопасности автоматического полета предусматриваются на каждом иерархическом уровне, с учетом их взаимосвязи, как по выполняемым функциям, так и по значениям ограничиваемых параметров. Отказы и неисправности более высокого уровня не должны приводить к выходу ЛА за допустимые ограничения по параметрам более низкого по уровню контура управления.

    САУ, предназначенные для автоматического полета на малых и предельно малых высотах, в условиях, пониженных метеоминимумов должны иметь дополнительные средства, повышающие надежность их работы и безопасность полетов. Любая САУ состоит из отдельно связанных между собой элементов. Элементом автоматики называют часть системы, в которой происходит качественные или количественные преобразования физической величины, а также передача преобразованного воздействия от предыдущего элемента к последующему. Каждый такой элемент выполняет определенные функции, которые для него определяют технологический процесс или функционирование самой системы. Таких элементов в автоматике достаточно много. Рассмотрим основную группу этих элементов.

    Датчики автоматики - ϶ᴛᴏ устройства, которые измеряют управляемые или регулируемые величины объектов управления и преобразовывают измеренные величины одной физической природы в другую (термосопротивления, термопары, переменные конденсаторы, фотоэлемент, тензодатчик и т.д.)

    Элементы сравнения – они сопоставляют задающее воздействие x(t) и управляемую величину y(t). Получаемая на выходе таких элементов разность e(t)=x(t)-y(t) передается по цепи воздействия, либо непосредственно на исполнительный механизм. Элементы сравнения, как самостоятельная часть системы не применяется, а является составной частью других устройств, к примеру, автоматических регуляторов (эл. мостовые схемы сравнения, потенциометры, пружинные элементы и др.)

    Усилители – они в системах автоматики обычно используются для усиления задающего воздействия x(t) или разности e(t), когда мощности самих сигналов недостаточно для работы регуляторов (электронные, ионные, магнитные, электромагнитные усилители, редуктор, гидравлические усилители).

    Исполнительные механизмы – они предназначены для измерения управляемых величин, или поддержания их в заданных пределах. Они предназначены для выработки более мощного воздействия на ОУ, нежели выходной сигнал регулятора (эл. двигатели – серводвигатели; соленоиды; гидро- и пневмодвигатели и т.д.).

    Задающие элементы (элементы настройки). Онᴎ представляют из себя устройства, при помощи которых в САУ подается задающее воздействие x(t) (потенциометры, вращающиеся трансформаторы и т.д.).

    Корректирующие элементы – они предназначаются для улучшения регулировочных свойств системы в целом, или отдельных ее частей (дифференцирующие и интегрирующие цепи, нелинейные элементы и т.д.).

    Командоаппараты – они предназначены для подачи в систему различных воздействий и команд (кнопки, выключатели, конечные выключатели и т.д.).

    Элементы защиты – они предназначены для выполнения защитных функций, при недопустимых режимах работы (токовые реле, электротепловые реле, автоматические выключатели, предохранители и т.д.).

    Контрольно-измерительные приборы – устройства для измерения и контроля различных величин и параметров (показывающие, самопишущие и т.д.).

    Также к элементам автоматики относят автоматические регуляторы, объекты управления, сигнальная аппаратура.

    Все элементы автоматики обычно указывают на функциональных и структурных схемах, внутри которых указывается либо назначение прибора, либо его передаточная функция и обязательно показывается действующие на элемент входные и выходные воздействия.


      1. Классификация САУ


    Классифицировать системы автоматического управления можно по методу управления и функциональному признаку. По методу управления все системы делятся на два больших класса: обыкновенные (не самонастраивающиеся) и самонастраивающиеся (адаптивные).

    Обыкновенные системы, относящиеся к категории простых, не изменяют своей структуры в процессе управления. Они наиболее разработаны и широко применяются в литейных и термических цехах. Обыкновенные системы автоматического управления подразделяют на три подкласса: разомкнутые, замкнутые и комбинированные системы управления.

    Разомкнутые системы автоматического управления в свою очередь делят на системы автоматического жесткого управления (САЖУ) и системы управления по возмущению.

    У первых систем регулятор воздействует на объект управления независимо от полученного результата, т. е. значения регулируемой величины и внешнего возмущения. Системы управления по возмущению работают по принципу, когда управляющее воздействие вырабатывается в зависимости от внешнего возмущения, оказывающего влияние на объект управления.

    Замкнутые системы автоматического управления, работающие по принципу отклонения, называют также системами автоматического регулирования (САР). Их отличительной чертой является наличие замкнутого контура прохождения сигналов, т. е. наличие обратного канала, по которому информация о состоянии регулируемой величины передается на вход элемента сравнения.

    Системы автоматического регулирования предназначены для решения трех задач: стабилизации регулируемой величины (стабилизирующая САР), изменения регулируемой величины по известной (программная САР) или неизвестной (следящая САР) программам.

    В стабилизирующих САР заданное значение регулируемой величины постоянно. Примером такой системы может служить система регулирования температуры в рабочем пространстве термической печи. В программных САР значение регулируемой величины изменяется во времени по заранее разработанной (известной) программе.

    В следящих системах заданное значение регулируемой величины изменяется во времени по заранее неизвестной программе. Следящие и программные САР отличаются от стабилизирующих принципом обработки задающего сигнала.

    Наиболее типичным примером следящего регулирования является автоматическое поддержание заданного соотношения между расходами топлива и воздуха при регулировании процесса горения в топливных плавильных и нагревательных печах.



    Рисунок 1.7 Системы автоматического управления
    Системы автоматического управления: а — разомкнутая, б — разомкнутая по отклонению, в — замкнутая, г — комбинированная, д — самонастраивающаяся, Р — регулятор, ОУ — объект управления, ЭС — элемент сравнения, УАВ — устройство анализа задающего воздействия: ВУ — вычислительное устройство, ИУ — исполнительное устройство, АУУ — автоматическое управляющее устройство, УАО — устройство анализа объекта управления.

    Комбинированные системы сочетают в себе достоинства систем управления по отклонению и по возмущению, что повышает точность управления. Действие неучтенных возмущений в комбинированных системах компенсируется или ослабляется управлением по отклонению.

    Самонастраивающиеся (адаптивные) системы можно разделить на три подкласса: экстремальные системы, системы с самонастройкой параметров и системы с самонастройкой структуры.

    Системами экстремального регулирования называют системы стабилизирующего, следящего или программного управления, у которых настройка, программа или закон воспроизведения автоматически изменяются в зависимости от изменения внешних условий или внутреннего состояния системы с целью создания оптимального режима работы объекта управления.

    В таких системах вместо постоянной настройки или программы устанавливается устройство автоматического поиска, которое проводит анализ какой-либо характеристики объекта (коэффициента полезного действия, производительности, экономичности и т. п.) и в зависимости от полученного результата подает в управляющее устройство требуемое значение регулируемой величины так, чтобы данная характеристика получила экстремальное значение при непрерывном изменении различных возмущающих воздействий, оказывающих влияние на условия работы системы.

    В системах с самонастройкой параметров при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (не по заранее заданной программе) изменение варьируемых параметров управляющего устройства с целью обеспечения устойчивой работы системы и поддержания регулируемой величины на заданном или оптимальном уровне.

    В системах с самонастройкой структуры при изменении внешних условий и характеристик объекта управления происходит переключение элементов в схеме соединений или введение в нее новых элементов. Целью таких изменений (отбора) структуры является достижение лучшего решения задачи управления.

    Отбор структуры осуществляется путем автоматического поиска с применением вычислительных и логических операций. Такие системы должны не только приспосабливаться ко всем изменениям внешних условий и характеристик объекта, но и функционировать нормально даже при наличии неполадок или отказов отдельных элементов, создавая новые цепи взамен нарушенных. Системы с самонастройкой структуры можно заставить самосовершенствоваться, "приобретать опыт" путем быстрого опробования нескольких вариантов, отбора и "запоминания" лучшего из них.

    Согласно классификации по функциональному признаку все автоматические системы управления подразделяют на четыре класса:

    системы для координации работы механизмов;

    • системы регулирования параметров технологических процессов;

    • системы автоматического контроля;

    • системы автоматической защиты и блокировки.

    Системы, предназначенные для координации работы отдельных механизмов установки или установки в целом, являются системами автоматического жесткого управления (САЖУ).

    Системы автоматического регулирования (САР) технологических процессов обеспечивают поддержание регулируемой величины на заданном уровне или изменение ее по заданной программе.

    Системы автоматического контроля (САК) содержат средства и методы для получения информации о текущих значениях параметров технологических процессов (температуры, давления, запыленности или загазованности воздуха и др.) без непосредственного участия человека.

    Системы автоматической защиты (САЗ) и блокировки (САБ) предотвращают возникновение, аварийных ситуаций в работе оборудования при установившемся режиме.

    Для источников аналоговых сигналов характерна большая, чем у дискретных, чувствительность к помехам и инструментальным погрешностям преобразователей (дрейф нуля, температурные колебания коэффициентов усиления и т.п.). Источники дискретных сигналов лишены этих недостатков, так как образующие их элементы работают не в усилительном, а в релейном режиме, поэтому дискретные сигналы обеспечивают большую надежность при САУ с дискретным управлением делятся на цифровые, импульсные и релейные.

    В цифровых САУ используется дискретное преобразование первичного непрерывного сигнала, которое называется квантованием по уровню, и сводится к замене бесконечного числа исходных значений конечным числом уровней. Разность уровней называется шагом квантования по уровню Ds. Пока значение исходного непрерывного сигнала не изменится на величину, равную шагу квантования, преобразователь фиксирует предыдущее значение уровня. Разрядность современных цифровых устройств позволяет использование столь малых значений шага квантования по уровню, что погрешности такого представления становятся пренебрежимо малыми. После квантования цифровой сигнал подвергается кодированию – значение каждой величины уровня выражается цифровым кодом (числом). В цифровых САУ соответствующую форму обычно имеют задающее воздействие x(t), и, после преобразования, сигналы в обратных связях. Цифровой сигнал рассогласования e(t) может быть преобразован в непрерывное управляющее воздействие z(t).

    В импульсных САУ используется квантование по времени – замена бесконечного числа значений исходного непрерывного сигнала конечным числом его значений, фиксируемых через определенный промежуток времени Dt – шаг квантования по времени.


    1. ФУНКЦИОНАЛЬНЫЕ ЭЛИМЕНТЫ АВТОМАТИЧЕСКИХ УСТРОЙСТВ

    Автоматические устройства состоят из измерительной, передающей (канал связи), логической и исполнительной функциональных частей. К автоматическому устройству обычно относится источник питания (БП).

    Изображение автоматического устройства в виде функциональных частей, элементов и связей между ними называется структурной схемой.

    Рассмотрим пример структурной схемы релейной защиты турбогенератора (ТГ) от токов КЗ (рис 2.1).



    Рисунок 2.1 Структурная схема релейной защиты турбогенератора (ТГ) от токов КЗ

    ИПІ – первичный измерительный преобразователь тока;

    ИП – измерительный преобразователь;

    ИЧ – измерительная часть автоматического устройства;

    КС – канал связи (передающая часть);

    ЗЭ – запоминающий элемент (запоминающий ток или закон изменения во времени);

    ЭС – элемент сравнения;

    КЭ – корректирующий элемент (частотный фильтр);

    РЭ – реализующий элемент – для фиксирования результата сравнения;

    ЛЭ – логический элемент (и, или, время и др.);

    ИЭ – исполнительный элемент.

    Для разъяснения принципов работы отдельных функционирующих частей устройства, наряду со структурными используются функциональные схемы. Выделяемые функциональные части и их элементы изображаются при этом с использованием условных графических обозначений и конкретных соединений между ними.

    Принципиальная электрическая схема дает детальное представление об АУ и принципе его работы. Она изображает полный состав элементов и связей между ними и выполняется с использованием условных графических обозначений.

    В параметрических датчиках, представляющих индуктивные и емкостные преобразователи, питание осуществляется от переменного тока. Принцип работы этих преобразователей основан на изменении реактивного сопротивления в зависимости от величины зазора между неподвижной и подвижной частями. Имеется много различных конструкции индуктивных преобразователей. Наибольшее распространение получили преобразователи с подвижным якорем и соленоидного типа. Они используются для измерения небольших линейных и угловых перемещений, деформаций и в управлении следящими системами. Преобразователь состоит из магнитопровода 2 с обмоткой 1 и якоря 3 соединенного с рабочим органом машины или. ОГП кранов. Изменение воздушного зазора δ, представляющего входную величину, изменяет, в свою очередь, индуктивность и сопротивление обмотки дросселя.

    Усилители предназначены для увеличения (от вспомогательного источника питания) мощности сигнала на выходе измерительной части системы автоматического управления, так как в большинстве случаев она недостаточна для приведения в действие исполнительных устройств. Назначение и место усилителей в системе автоматического управления обусловливает и предъявляемые к ним требования. Так, для усилителя в измерительной цепи главным параметром является стабильность характеристики, большой частотный диапазон и отсутствие искажения сигнала, а для выходного каскада усиления - КПД и выходная мощность. Наряду с обычными усилителями в системах автоматического управления используют усилители-преобразователи, осуществляющие преобразование постоянного тока в переменный, и операционные усилители, осуществляющие моделирование различных математических операций (суммирование, дифференцирование, интегрирование и т. д.). В электрических системах используют электронные, электромагнитные и при больших мощностях электромашинные, а в неэлектрических - механические, пневматические и гидравлические усилители. Электронные усилители делят на ламповые и полупроводниковые. В связи с тем, что полупроводниковые усилители не требуют энергию и время на подогрев, имеют меньшие габариты, массу, значительный срок службы и обладают достаточно высокой механической прочностью и надежностью, они практически вытеснили электровакуумные лампы. К отличительным особенностям полупроводниковых усилителей следует отнести также экономичность, мгновенную готовность к работе, высокий коэффициент усиления и большой диапазон усиливаемых частот, а также вибро- и ударостойкость. По виду усиливаемого сигнала усилители делятся на усилители тока (переменного и постоянного) и напряжения, а по числу каскадов на одно- и многокаскадные. По принципу действия их классифицируют на усилители дискретного (релейного) и аналогового действия. При этом в последние годы осуществляется интенсивный переход к интегральным схемам.

    Главная обратная связь соединяет выход системы управления с ее входом, т. е. связывает управляемую величину с задающим устройством. Остальные обратные связи считают дополнительными или местными. Дополнительные обратные связи передают сигнал воздействия с выхода какого-либо звена системы на вход любого предыдущего звена. Они используются для улучшения свойств и характеристик отдельных элементов.

    По назначению – силовые, скоростные, температурные и др.По принципу действия - механические, электрические, тепловые, акустические, оптические, радиоактивные. По способу преобразования неэлектрических величин в электрические - активные (генераторные) и пассивные (параметрические). В генераторных датчиках энергия входного сигнала преобразуется (без участия вспомогательных источников энергии) в электрическую энергию выходного сигнала (ток, напряжение, электрический заряд). В параметрических датчиках под действием входного сигнала изменяется какой-либо собственный параметр датчика (емкость, сопротивление, индуктивность). При этом схема включения таких датчиков всегда имеет внешний источник питания. По конструкции и принципу действия чувствительного элемента датчики подразделяют на контактные и бесконтактные. При этом в контактных датчиках чувствительный элемент взаимодействует непосредственно с контролируемым объектом, а в бесконтактных это взаимодействие отсутствует. К последним относятся фотоэлектрические, ультразвуковые, радиоактивные и специальной конструкции щуповые датчики. Работа датчиков определяется их статическими, динамическими и частотными характеристиками и оценивается величиной входных и выходных сигналов, чувствительностью, инерционностью и погрешностью. Так как измерение одной и той же физической величины может выполняться с помощью различных датчиков, то их выбор должен обеспечить технические требования, предъявляемые к разрабатываемой системе автоматики технологическим процессом, конструкцией и спецификой эксплуатации машины.

    Усилители предназначены для увеличения (от вспомогательного источника питания) мощности сигнала на выходе измерительной части системы автоматического управления, так как в большинстве случаев она недостаточна для приведения в действие исполнительных устройств. Назначение и место усилителей в системе автоматического управления обусловливает и предъявляемые к ним требования. Так, для усилителя в измерительной цепи главным параметром является стабильность характеристики, большой частотный диапазон и отсутствие искажения сигнала, а для выходного каскада усиления - КПД и выходная мощность. Наряду с обычными усилителями в системах автоматического управления используют усилители-преобразователи, осуществляющие преобразование постоянного тока в переменный, и операционные усилители, осуществляющие моделирование различных математических операций (суммирование, дифференцирование, интегрирование и т. д.). В электрических системах используют электронные, электромагнитные и при больших мощностях электромашинные, а в неэлектрических - механические, пневматические и гидравлические усилители. Электронные усилители делят на ламповые и полупроводниковые. В связи с тем, что полупроводниковые усилители не требуют энергию и время на подогрев, имеют меньшие габариты, массу, значительный срок службы и обладают достаточно высокой механической прочностью и надежностью, они практически вытеснили электровакуумные лампы. К отличительным особенностям полупроводниковых усилителей следует отнести также экономичность, мгновенную готовность к работе, высокий коэффициент усиления и большой диапазон усиливаемых частот, а также вибро- и ударостойкость. По виду усиливаемого сигнала усилители делятся на усилители тока (переменного и постоянного) и напряжения, а по числу каскадов на одно- и многокаскадные. По принципу действия их классифицируют на усилители дискретного (релейного) и аналогового действия. При этом в последние годы осуществляется интенсивный переход к интегральным схемам.

      1. Математическое описание элементов систем

    Под идентификацией (математическим описанием) объекта понимается построение символической модели, устанавливающей закономерность между выходными и входными переменными объекта, которая дает возможность определить с заданной точностью выходную переменную объекта — оригинала по ее входным переменным. Основным методом построения математической модели объекта управления является статистический, т. е. метод, основанный на статистической динамике систем автоматического управления.

    На основе рассмотренных методов проектирования алгоритмов управления с обратными и прямыми связями могут быть разработаны программы, позволяющие проектировать алгоритмы управления в диалоговом режиме. Необходимым предварительным условием является, конечно, знание соответствующих математических моделей объектов управления и, возможно, моделей сигналов. Разработка моделей может осуществляться как теоретическими методами, так и с помощью процедуры идентификации. Теоретические методы построения модели должны использоваться, если объект не доступен для исследования, например, находится в стадии разработки. Однако существует ряд естественных факторов, ограничивающих точность теоретической модели. К ним относятся ограниченная точность получаемых данных и параметров объекта, упрощающие допущения, используемые при выводе уравнений модели, а также неточности задания моделей привода, регулирующих элементов и датчиков. В частности, для многих промышленных объектов (химической, энергетической и тяжелой промышленности) физические или химические законы либо неизвестны, либо не могут быть выражены с помощью разумного числа математических уравнений. Поэтому, измеряя динамические характеристики существующего объекта, т. е. используя методы идентификации, можно построить модель значительно быстрее и с большей степенью точности. Это может быть выполнено вне связи с объектом на автономной ЭВМ либо, если вычислитель уже состыкован с объектом управления, в режиме нормальной эксплуатации. Поскольку для расчета алгоритмов управления более всего удобны параметрические модели объектов управления, применимы методы.

    Рассмотрены вопросы статики и динамики, устойчивости и качества, методы коррекции как линейных, так и нелинейных систем управления. Дана характеристика металлургических процессов как объектов управления. Приведены математическое описание и исследование систем управления металлургическими процессами.

    Применение управляющих машин для автоматизации производственных процессов требует создания математического описания процесса, отработки алгоритма и составления машинной программы, применения разработанных и разработки новых датчиков информации и устройства связи с УВМ, привязки УВМ к объекту, отладки и опытной эксплуатации системы управления с УВМ.

    Непрерывное повышение качества изделий при одновременном снижении их себестоимости — одна из основных задач, стоящих перед современным машиностроением. Для того чтобы повысить качество изделий, необходимо проанализировать точность важнейших качественных показателей и изучить влияние на них различных технологических факторов. Расчетно-аналитические и экспериментальные методы позволяют справиться с этими задачами. Наибольший эффект достигается при использовании метода ускоренных многофакторных пассивных экспериментов с применением электронно-вычислительных машин. Весь комплекс расчетов состоит из следующих этапов:

    1) анализа точности технологического процесса по важнейшим качественным показателям;

    2) расчета влияния технологических факторов на качество выпускаемых деталей;

    3) математического описания технологического процесса (объекта управления) и построения соответствующих ему математических моделей.

    Данная работа посвящена статистическим методам оценки точности и математическому описанию технологических процессов, осуществляемых с помощью ЭВМ. Такое описание позволяет построить математическую модель, рассматриваемую как объект управления в моменты, соответствующие определенным этапам технологического процесса, или во времени. Модели, характеризующие влияние случайных погрешностей на качество деталей, описываются случайными величинами, а модели систематических погрешностей — случайными функциями времени.

    Сложность теплотехнических объектов управления предопределяет необходимость упрощений, принимаемых на стадии выбора математической модели. Например, математическое описание динамики реальной системы с распределенными параметрами может производиться в форме обыкновенных нелинейных дифференциальных уравнений. Для расчета АСР достаточно располагать линейной моделью, которая получается в результате линеаризации исходного нелинейного уравнения.

    При прогнозировании качественных показателей сварных соединений в процессе их выполнения, построении самонастраивающихся систем управления сваркой и решении других подобных задач обычно прибегают к формализованному описанию сварочного процесса как объекта управления путем представления его в виде математической модели. Такие модели описывают только те особенности процесса, которые существенны для его управления, а также ограничения, обусловленные техническими, экономическими и другими факторами. Целью моделирования является установление математической зависимости между выбранным показателем качества Y сварного соединения.

    Для исследования автоматической системы управления необходимо располагать математическим описанием ее элементов (объекта управления, управляющего устройства) и характеризующих ее состояние сигналов.

    С целью демонстрации свойств различных алгоритмов в цепях прямых и обратных связей замкнутых контуров управления проводилось их математическое моделирование на универсальных ЭВМ. Кроме того, многие алгоритмы были реализованы на управляющих ЭВМ, оснащенных пакетами прикладных программ. Работоспособность этих алгоритмов оценивалась по результатам практических экспериментов, в которых к управляющим ЭВМ подключались аналоговые модели, а также тестовые и реальные технологические объекты.

    При разработке электронных, пневматических или гидравлических аналоговых регуляторов проектировщик по техническим или экономическим соображениям вынужден пользоваться достаточно узким набором элементов, действующих как интеграторы (И), дифференциаторы (Д) или пропорциональные усилители (П). В силу этого при синтезе систем управления аналогового типа приходится сталкиваться с весьма серьезными ограничениями. Иначе обстоит дело с алгоритмами для управляющих ЭВМ. Гибкость программных средств существенно расширяет возможность реализации сложных алгоритмов. Это создает предпосылки для практического применения новейших методов современной теории управления, но одновременно ставит перед проектировщиком вопрос какой управляющий алгоритм наиболее эффективен при решении конкретной прикладной задачи. Естественно, ответ на этот вопрос возможен лишь в том случае, когда имеется достаточно полное описание объекта в форме его математической модели и известны показатели.

    При экспериментальном анализе (или идентификации) объектов исходной информацией для построения математических моделей служат сигналы, доступные непосредственному измерению. Входные и выходные сигналы объекта обрабатываются с использованием методов идентификации, которые позволяют описать соотношения между этими сигналами в виде некоторой математической зависимости. Полученная модель может быть непараметрической (например, переходная функция или частотная характеристика, заданные в табличной форме) или параметрической (например, системы дифференциальных или разностных уравнений, зависящих от параметров). Для построения непараметрических моделей обычно применяются методы, основанные на преобразовании Фурье или корреляционном анализе. Параметрические модели получают с помощью статистических методов оценки параметров или методов настройки параметров по заданным частотным характеристикам или реакциям на ступенчатое воздействие. При синтезе алгоритмов для управляющих ЭВМ целесообразно пользоваться параметрическими моделями, поскольку современная теория систем в основном ориентирована на описание объектов, содержащее параметры в явной форме. Кроме того, для синтеза алгоритмов управления по параметрическим моделям могут применяться аналитические методы.

      1. Особенности следящих систем

    Следящая система управления — вид системы автоматического управления, в которой заранее неизвестен вид управляющего воздействия. Обычно следящие системы предназначены для воспроизведения на выходе изменения управляющего воздействия, слежения за ним. Они представляют собой особый класс систем автоматического управления, в которых изменения происходят по любому закону. Входной сигнал непрерывно обрабатывается системой, при этом заданное входное воздействие, обрабатываемое системой, изменяется произвольно в широких пределах. В системах автоматического управления, которые состоят только из основных функционально необходимых элементов, служащих для реализации того или иного принципа регулирования, хотя и уменьшаются ошибки по сравнению с системами без регулятора, обычно не удаётся получить требуемых показателей качества. Для улучшения показателей качества вводят в системы автоматического управления корректирующие цепи. Одна из таких цепей дифференцирующая фазоопережающая.

    Следящая система состоит из объекта регулирования, автоматического регулятора (управляющее устройство), исполнительного механизма, преобразующего выходной сигнал регулятора в сигнал управления объектом, датчика и измерительного преобразователя. Следящие системы, которые состоят только из основных функционально необходимых элементов, служащих для реализации того или иного принципа регулирования, хотя и уменьшаются ошибки по сравнению с системами без регулятора, обычно не удаётся получить требуемых показателей качества. Для улучшения показателей качества вводят в системы автоматического регулирования корректирующие цепи.

    Гидроусилитель-совокупность гидроаппаратов и объемных гидродвигателей, в которой движение управляющего элемента преобразуется в движение управляемого элемента большей мощности, согласованное с движением управляющего элемента по скорости, направлению и перемещению.

    Гидроусилитель следящего типа представляет собой силовой гидропривод, в котором исполнительный механизм (выход) воспроизводит (отслеживает) закон движения управляющего органа (входа), для чего в системе предусмотрена непрерывная связь между выходным и входным элементами, которая называется обратной связью.

    Название такого привода -"следящий Гидроусилитель" или "следящий гидропривод" - обоснованы тем, что выход такого гидроусилителя автоматически устраняет через обратную связь возникающее рассогласование между управляющим воздействием (входным сигналом) и ответным действием (выходным сигналом).

    Гидравлические следящие приводы нашли широкое применение в различных отраслях техники и в особенности в системах управл6ения современными транспортными машинами, включая автомашины, морские суда, самолеты и прочие летательные аппараты.

    Блок-схема следящего привода (рис.2.2) состоит из следующих основных элементов: задающего устройства ЗУ, которым формируется сигнал управления, пропорциональный требуемому перемещению исполнительного механизма (датчики, реагирующие на изменение условий работы или параметров технологического процесса); сравнивающего устройства СУ, или датчика рассогласования, устанавливающего соответствие сигнала воспроизведения, поступающего от исполнительного механизма, сигналу управления;

    - усилителя у которого производится усиление мощности сигнала управления за счет внешнего источника энергии ВИЭ;

    - исполнительного механизма ИМ, которым перемещается объект управления и воспроизводится программа, определяемая задающим устройством;

    -обратная связь ОС, которой исполнительных механизм соединен со сравнивающим устройством или с усилителем. Обратная связь является отличительным элементом следящего привода.



    Рисунок 2.2 Блок-схема следящего привода

    Принцип работы следящего привода заключается в следующем. Изменение условий работы машины или параметров технологического процесса вызывает перемещение задающего устройства, которое создает рассогласование в системе. Сигнал рассогласования воздействует на усилитель, а через него и на исполнительный механизм. Вызванное этим сигналом перемещение исполнительного механизма через обратную связь устраняет рассогласование и приводит всю систему в исходное положение.

    Рассмотрим работу следящего привода на примере принципиальной схемы рулевого управления автомобиля (рис. 2.3).


    1   2   3   4


    написать администратору сайта