Главная страница
Навигация по странице:

  • Переменная Y Переменная X 0 1

  • Девятко И. Ф. Методы социологического исследования. Екатеринбург, Изд-во Урал, ун-та, 1998. 208 с. Девятко И. Ф. Методы социологического исследования. Екатеринбург. Социологического исследования екатеринбург Издательство Уральского университета


    Скачать 1.7 Mb.
    НазваниеСоциологического исследования екатеринбург Издательство Уральского университета
    АнкорДевятко И. Ф. Методы социологического исследования. Екатеринбург, Изд-во Урал, ун-та, 1998. 208 с.doc
    Дата27.05.2017
    Размер1.7 Mb.
    Формат файлаdoc
    Имя файлаДевятко И. Ф. Методы социологического исследования. Екатеринбург.doc
    ТипКнига
    #8072
    КатегорияСоциология. Политология
    страница23 из 28
    1   ...   20   21   22   23   24   25   26   27   28

    Общая форма таблицы сопряженности размерности 2x2





    Переменная Y

    Переменная X

    0

    1

    Всего

    1

    А

    b

    a + b

    0

    С

    d

    c + d

    Всего

    а + с

    b + d

    N


    Предположим, мы располагаем таблицей сопряженности для двух переменных-признаков X и Y, каждая из которых принимает лишь два значения, которые мы условно обозначим как «0» и «1». В каждой из четырех клеток таблицы содер­жатся абсолютные частоты, т. е. число случаев для каждого из возможных соче­таний значений признаков (т. е. для сочетаний «0—1», «1—1», «0—0», «1—0»). Обозначим частоты в каждой из клеток таблицы латинскими буквами а, b, с и d. В такой общей форме таблица сопряженности для двух дихотомических при­знаков будет выглядеть как на таблице 8.4.

    Для расчета коэффициента сопряженности «фи» используют формулу:


    Эта простая в вычислительном отношении формула получается в результате ряда преобразований исходной формулы для вычисления величины «хи-квад­рат» (2). Эта исходная формула позволяет лучше понять общую идею оценки связи качественных признаков, которую мы опишем, не вдаваясь в статисти­ческие детали. Исходная формула для величины «хи-квадрат» выглядит так:



    Понятно, что наблюдаемые частоты мы можем найти в клетках таблицы сопря­женности. Но что понимается под ожидаемыми, точнее, теоретически ожидае­мыми частотами? Ожидаемые частоты — это те частоты, которые должны были бы стоять в клетках той же таблицы сопряженности, если бы две интересую­щие нас переменные были бы независимы, т. е. расслоение наблюдений по од­ному признаку оставалось бы пропорциональным для разных подгрупп, выде­ленных по другому признаку.

    Пусть, например, данные относительно участия в парламентских выборах для 1000 опрошенных позволили построить таблицу 8.5.

    Таблица 8.5

    Участие в выборах и пол





    Участие в выборах

    Женщины


    Мужчины


    Всего


    Участвовали

    200

    500

    700 (70%)

    не участвовали

    200

    100

    300 (30%)

    Всего

    400

    600

    1000(100%)


    Для приведенных в таблице 8.5 данных гипотеза (или модель) независимого поведения признаков предполагала бы, что в мужской и женской подгруппах пропорция участия и неучастия в выборах должна была бы сохраняться такой же, как и для всей выборки в целом (разумеется, в пределах выборочной ошиб­ки). Например, для женщин число участвовавших в выборах, с учетом их доли в выборке (равной 400/1000) составило бы , т. е. 280 проголосовавших. Отсюда автоматически следует, что до избирательных участков не дошли бы 120 дам (т. е. 400 280). Ожидаемая частота голосования для мужчин составила бы Соответственно не проголосовали бы 180 мужчин. Для модели независимости признаков таблица сопряженности выглядела бы так:

    Таблица 8.6


    Ожидаемые частоты для распределения участия в

    выборах по полу (рассчитанные в соответствии с моделью независимости признаков)


    Участие в выборах

    Женщины

    Мужчины

    Всего

    участвовали

    280

    420

    700

    не участвовали

    120

    180

    300

    Всего

    400

    600

    1000


    Сравнив таблицы 8.5 и 8.6, мы видим, что многое во второй из них «осталось как было». Маргиналы таблицы, т. е. общее количество мужчин и женщин, про­голосовавших и не проголосовавших, остались, естественно, неизменными. Отличаются лишь теоретически ожидаемые частоты в клетках таблицы 8.6. «Хи-квадрат» как раз и оценивает суммарную величину отклонения наблюдае­мых значений от ожидаемых («взвешенную» относительно ожидаемых частот). Для данных таблицы 8.5 величина «хи-квадрат» составит 136,128 (проверьте самостоятельно, используя данные табл. 8.6). Это явно много, но, чтобы оце­нить существенность, значимость полученной величины, следует воспользо­ваться специальными таблицами1. Отметим, что для того чтобы найти таблич­ное значение, нужно определить так называемое число степеней свободы. В рассматриваемом примере оно равно единице, так как все теоретически ожи­даемые частоты в таблице 8.5 — при заданных маргиналах — можно получить, вычислив лишь одну из них. Если бы размерность таблицы была бы 4x4 (по четыре номинальные градации для каждого признака), то оценка «хи-квадрат» производилась бы для (4  1)(4  1) = 9, т. е. 9 степеней свободы. Обсуждавший­ся выше коэффициент  — это просто квадратный корень нормированного относительно численности выборки «хи-квадрата». Удобства коэффициента  оче­видны: его легче вычислить, не прибегая к расчету ожидаемых частот, к тому же его величина меняется в пределах от 0 до 1 . (Попробуйте рассчитать значе­ние для данных таблицы 8.5.) Существуют и другие коэффициенты взаимосвя­зи (сопряженности) признаков, основанные на величине «хи-квадрат», напри­мер, VКрамера, Т Чупрова.

    Таблица 8.7

    1   ...   20   21   22   23   24   25   26   27   28


    написать администратору сайта