Главная страница

Девятко И. Ф. Методы социологического исследования. Екатеринбург, Изд-во Урал, ун-та, 1998. 208 с. Девятко И. Ф. Методы социологического исследования. Екатеринбург. Социологического исследования екатеринбург Издательство Уральского университета


Скачать 1.7 Mb.
НазваниеСоциологического исследования екатеринбург Издательство Уральского университета
АнкорДевятко И. Ф. Методы социологического исследования. Екатеринбург, Изд-во Урал, ун-та, 1998. 208 с.doc
Дата27.05.2017
Размер1.7 Mb.
Формат файлаdoc
Имя файлаДевятко И. Ф. Методы социологического исследования. Екатеринбург.doc
ТипКнига
#8072
КатегорияСоциология. Политология
страница8 из 28
1   ...   4   5   6   7   8   9   10   11   ...   28


Экспериментальная гипотеза в этом случае формулируется как гипотеза об от­ношениях значений О1, О2 и О3(в рассмотренном примере О1 < О2и O2 > O3). Независимая переменная в многомерном эксперименте может иметь и более трех уровней. Иначе говоря, она может быть «нормальной» количественной переменной, измеренной на интервальном или абсолютном уровне. Соответ­ственно гипотеза многомерного эксперимента может формулироваться в более точных терминах — как гипотеза об «относительно-абсолютных» или даже «аб­солютно-абсолютных» отношениях переменных. Например, в эксперименте может изучаться влияние привлекательности лектора на частоту посещения занятий студентами, воздействие количества доступных источников информации о продукте на формирование потребительских предпочтений либо характер вза­имосвязи между размером денежного вознаграждения испытуемых и успешно­стью решения ими однотипных задач. Таким образом, многомерные экспери­менты позволяют проверять более тонкие и точные содержательные гипоте­зы о механизмах индивидуального и группового поведения.

Статистические гипотезы, проверяемые в многомерных экспериментах, — это гипотезы о различиях между значениями зависимой переменной для разных уровней независимой переменной. Нулевая гипотеза формулируется как гипотеза о том, что разброс индивидуальных значений внутри одного уровня независимой переменной (внутри соответствующей экспериментальной группы) идентичен разбросу индивидуальных значений между различными уровнями (группами), т. е. отношение дисперсии межгрупповых оценок к дисперсии внутригрупповых оценок равно 1. Последнее отношение обозначается как F-критерий. Для того чтобы определить, не превышает ли полученная в конкретном 8 эксперименте величина F пороговое значение статистического F-распределения для заданного уровня значимости, используют статистическую технику однофакторного дисперсионного анализа. Термин «однофакторный» в данном случае означает, что в эксперименте использовалась лишь одна независимая переменная (фактор воздействия). Рассмотрение техники дисперсионного ана­лиза и статистического оценивания получаемой в результате величины Fвы­ходит за пределы данного обзора (детальные описания и рекомендации при необходимости можно найти в книгах из списка дополнительной литерату­ры к главе).

В тех областях социологии и социальной психологии, которые имеют сравни­тельно развитую традицию экспериментальных исследований (межличностное и межгрупповое восприятие, исследования динамики установок, социальные процессы в малых группах, оценивание эффективности образовательных программ и т. д.) часто используют более сложные схемы экспериментирования, объединяемые термином «факторные эксперименты».

Факторный экспериментальный план включает в себя две и более, независи­мые переменные (именуемые также «факторами»), каждая из которых име­ет несколько уровней воздействия. Так как при увеличении числа независимых переменных очень быстро возрастает число групп, в каждой из которых приме­няется одна из возможных комбинаций этих переменных и их уровней1(в пол­ном факторном плане число групп равно произведению числа уровней, задава­емых для каждой независимой переменной), в целях экономии ресурсов и ра­ционального распределения исследовательских усилий были разработаны многочисленные планы, где каждый из «уровней» переменных реализуется один раз, а обобщение и статистический анализ взаимодействия различных факто­ров и их изолированного и совместного влияния на зависимую переменную проводится на групповом уровне2.

Всякий факторный эксперимент — это, в сущности, несколько экспериментов, объединенных в одном плане. Обобщенные данные факторного эксперимента позволяют ответить на два типа вопросов: 1) имеется ли эффект воздействия для каждой отдельно взятой независимой переменной; 2)зависит ли величина этого эффекта воздействия от величины значений других независимых пере­менных? Изолированный эффект воздействия одной независимой переменной называют главным эффектом, а изменение величины этого эффекта под влия­нием другой независимой переменной называют взаимодействием.

В таблице 4.2 представлен план простейшего факторного эксперимента «два на два» («2 X 2»), в котором изучалось влияние новизны и типа изображения на интерес, проявляемый к этому изображению 4-месячными младенцами. В ка­честве индикатора интереса использовалась длительность разглядывания. Каж­дая из независимых переменных была представлена только двумя уровнями: для новизны — новое или старое, предъявлявшееся в предыдущих сериях изоб­ражение; для типа изображения — геометрический контур либо схематическое изображение человеческого лица (схематические рисунки использовались для уравнивания изображений по визуальной сложности, так как время фиксации взора обычно зависит от сложности и количества деталей). Как видно из приве­денных в таблице 4.2 данных, налицо оба главных эффекта. Влияние новизны на интерес становится очевидным при сравнении средних по строкам — сред­няя длительность разглядывания изображений (и геометрических, и «физиономий») заметно выше в случае предъявления новых рисунков (55 сек против 20). Сравнение по столбцам показывает, что при усреднении данных по двум груп­пам (новые и старые рисунки) изображения человеческого лица вызывают зна­чительно больший интерес, проявляющийся в более длительном разглядыва­нии (45 сек). Налицо также взаимодействие между типом изображения и но­визной. Результаты предъявления разных типов изображений различны для «старой» и «новой» группы. Различаются и значения разностей по столбцам для каждой строки (60 50 = 10 сравнительно с 30 10 = 20), и соответствую­щие показатели по строкам (60 30 = 30 сравнительно с 50 10 = 40). Иными словами, большая привлекательность человеческих лиц сильнее проявляется при предъявлении старых рисунков (различие в 10 сек при предъявлении но­вых картинок увеличивается до 20 для старых изображений), а различие между предъявлением старых и новых рисунков при использовании геометрических контуров возрастало до 40 сек.

Таблица 4.2
Факторный эксперимент 2x2




Новизна изображения




Тип изображения


Средняя длительность разглядывания, сек.

Лицо


Геометрическое




Новое

Старое

60

30

50

10

55

20

Средняя длительность, cек.

45

30



1   ...   4   5   6   7   8   9   10   11   ...   28


написать администратору сайта