Рациональное использование природных ресурсов. Содержание 1анализ и тенденции развития литья теплоэнергетического оборудования 5
Скачать 1.71 Mb.
|
6.2ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕРМЕТИЧНОСТИ СЕРЫХ ЧУГУНОВСерые чугуны представляют собой очень сложные железоуглеродистые сплавы, заключающие в себе большое количество изолированных друг от друга свободных и заполненных графитом пор самой разнообразной формы и размеров. Характер пор в чугуне, их размер и количество зависят от многих факторов, основными из которых являются: химический состав, структурное строение, технология изготовления отливок, их термообработка и условия эксплуатации. При воздействии на отливку жидкости, находящейся под высоким давлением, эта жидкость проникает в поры чугуна, а затем, если не встречает достаточного сопротивления, она просачивается дальше в тело отливки. Процесс просачиваемости чугунов является очень сложным и в настоящее время остается почти не изученным. Опыты, проведенные в этом направлении многими исследователями, не раскрывают в достаточной мере механизма просачиваемости жидкости через тело чугунных отливок. В связи с этим оценка просачиваемости чугунов в настоящее время производится по двухбалльной системе - “текут”, “не текут” [24]. Просачиваемость чугунов находится в обратной зависимости от их плотности или так называемой герметичности. Поэтому изучение свойств просачиваемости или проницаемости обычно ведется по величине, обратной их проницаемости. Движение жидкости в порах чугуна является чрезвычайно сложным процессом. Даже в простейших случаях фильтрации, когда пористая Среда образована из большого количества систематически уложенных шаров, точного гидромеханического решения движения жидкости не имеется. Впрочем, это не так важно, т.к. при изучении герметичности чугунов в большей степени имеют значение усредненные характеристики потока жидкости также как скорости просачивания, расхода и т.д., а не форма движения жидкости в самих порах. В настоящее время создана достаточно обоснованная теория движения жидкости и газов в естественных пористых средах. В ней разработаны основные положения в случае движения жидкостей и газов в естественных пористых средах и определены физические законы фильтрации. В первом приближении движение жидкости через стенки чугунных отливок, находящихся под большим давлением, должны подчиняться тем же самым закономерностям, что и движение жидкостей в естественных пористых средах [24]. Однако при движении жидкости в порах чугуна имеются существенные различия, которые по нашему мнению будут заключаться в следующем: Естественные пористые среды имеют сплошные каналы, а серые чугуны - изолированные поры. Поэтому потери давления во втором случае будут определяться не только внутренним сопротивлением движения жидкости в порах, но и сопротивлением, возникающим в результате разрушения основной металлической массы, расклинивающим действием жидкости. Перепад давлений, даже при незначительной толщине стенок отливок гидросистем, всегда будет значительно больше по сравнению с перепадом давления при фильтрации в естественных пористых средах. Высокие давления в отливках, как правило, вызывают в них деформации, что оказывает существенное влияние на герметичность чугуна. Скорость просачивания жидкости в чугуне значительно меньше скорости фильтрации в пористых средах. Поэтому динамическими и инерционными факторами, имеющими место при просачивании в дальнейшем при изучении этого явления можно пренебречь. Наконец, самое главное отличие состоит в том, что при фильтрации в естественных пористых средах основной целью является увеличение скорости фильтрационного потока и, следовательно, увеличению расхода жидкости, в то время как при изучении герметичности серых чугунов главной целью является изыскание материалов, обладающих максимальной герметичностью, которая обуславливала бы минимальную или же нулевую скорость движения потока. Указанные выше различия, естественно, вносят существенные поправки в те или иные уравнения движения жидкости в процессе фильтрации, но не изменяют самих условий, характера и законов движения этой жидкости в теле чугунных отливок гидросистем. Поэтому в дальнейшем при выводе основных закономерностей при исследовании проницаемости серого чугуна или обратной величины нами были использованы все известные элементы теории течения однородных жидкостей и газов в пористой недеформируемой среде. Для изучения законов проницаемости чугуна прежде всего необходимо было установить зависимость расхода и скорости движения просачиваемости жидкости от ее давления и герметичности чугуна. Эту закономерность необходимо установить в пределах малых площадок, величина которых, однако, велика по сравнению с размерами пор. В этом случае среднюю скорость движения жидкости через элементарную площадку чугуна можно определить по формуле [24]: (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) где V - средняя скорость движения жидкости через элементарную площадку чугуна; DW - количество просочившейся жидкости через элементарную площадку; Dw - элементарная площадка; t - время. В случае, если толщина стенки значительно меньше линейных размеров площадки и плоскости ее параллельны, тогда средняя скорость движения жидкости в порах будет выражаться уравнением: (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) где W - количество просочившейся жидкости через площадку. Но, так как поток жидкости не заполняет все пространство, а движется через часть объема занятой порами, тогда при коэффициенте пористости m скорость движения в порах V¢ будет равна: и (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) или V = mV’. Так как всегда m>1, то V = V¢. Отсюда пространство, занятое потоком жидкости, можно назвать областью просачивания. Очевидно, что линией движения потока жидкости будет называться такая линия, касательная в каждой точке которой совпадает с вектором скорости просачивания в этой точке. Известно, что скорость потока жидкости V зависит от избыточного давления Р [24], действующего на стенки чугуна, от его внутреннего сопротивления движению жидкости G и от вязкости самой жидкости h, т.е. (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) Внутреннее сопротивление материала G движению через него жидкости или газов по существу является герметичностью этого материала. Приравнивая правые части (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) и (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) и решая их относительно G, получим математическое выражение для герметичности чугуна и для других материалов: (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) Из приведенного уравнения (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) следует, что герметичность есть такое сопротивление материала проникновению через него жидкости, имеющей вязкость h и находящейся под давлением Р, при котором за время t через площадку w проникает W миллилитров этой жидкости. Другими словами, движение жидкости, находящейся под давлением Р, столбика материала с толщиной стенки, равной толщине отливки и поперечным сечением 1 см2 (Рис.ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-2). Если измерять количество просочившейся жидкости в см3, давление в кг/см2, площадь образца в см2, время в минутах и вязкость в °Е, тогда размерность герметичности будет выражаться в [24]. Эта единица герметичности в дальнейшем нами будет обозначаться ЕГ. Рис.ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-2. Схема к расчету единицы герметичности ЕГ есть такая герметичность материала, при которой через площадку в 1 см2 просачивается 1 см3 воды при вязкости 1°Е, находящейся под избыточным давлением, равном 1 кг/см2 за 1 минуту. В виду того, что единица ЕГ является весьма малой величиной, то в дальнейшем ее значение приводится в кЕГ и МЕГ: 1 кЕГ = 1000 ЕГ = 103 ЕГ; 1 МЕГ = 1000000 ЕГ = 106 ЕГ. Герметичность чугуна зависит от его природных свойств, а именно: пористости, сопротивления разрушению расклинивающего действия жидкости, деформации, а также от толщины стенки отливки. Для оценки качества материала, имея в виду его герметические свойства, целесообразно ввести понятие удельной герметичности. Удельной герметичностью называется герметичность, отнесенная к единице толщины стенки отливки, изготовленной из данной марки чугуна или данного материала. Зависимость герметичности чугуна от толщины стенки d точно еще не установлена. Поэтому удельную герметичность можно представить в такой функциональной зависимости: G0 = G×f(d). (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) Как будет указано ниже (рис.8.2 и 8.3), эта функциональная зависимость приближается к квадратичной и представляется в виде следующего уравнения: (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) Подставляя в (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) значения герметичности G, получим окончательную формулу для выражения удельной герметичности: (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) Величины, вычисленные по (ГЕРМЕТИЧНОСТЬ ЧУГУНОВ-) достаточно хорошо совпадают с нашими опытными данными. Поэтому эту формулу в первом приближении можно рекомендовать для определения удельной герметичности стандартных марок чугунов и других материалов. При проектировании литых деталей, работающих под повышенным давлением жидкости, желательно заранее знать, какой герметичностью должна обладать данная деталь, работающая в заданных конкретных условиях, каким образом установить и определить герметичность чугуна для этой детали. Для выполнения поставленной задачи необходимо ввести понятие о предельной допустимой герметичности. Предельно-допустимой герметичностью материала будем называть такое его внутреннее сопротивление, при котором скорость просачивания данной жидкости, находящейся под давлением Р, будет меньше или равна допустимой скорости просачивания. В качестве допустимой скорости просачивания целесообразно принять скорость во много раз меньшую скорости испарения жидкости с поверхности отливки. Можно задаваться допустимой скоростью просачивания и из других соображений, например, прочности отливки и т.д. |