Нефтегазопромысловое оборудование (1). Содержание введени оборудование общего назначения
Скачать 3.16 Mb.
|
12. ОБОРУДОВАНИЕ ДЛЯ СБОРА И ПОДГОТОВКИ НЕФТИ Унифицированная схема нефтегазосбора приведена ниже. Рисунок 101 — Унифицированная технологическая схема комплекса сбора и подготовки нефти, газа и воды нефтедобывающего района 1 — скважина; 2 — автоматизированная групповая замерная установка; 3 — блок подачи деэмульгатора; 4 — сепаратор I ступени; 5 — отстойник предварительного сброса воды; 6 — печь для нагрева эмульсии; 7 — каплеобразователь; 8 — отстойник глубокого обезвоживания и II ступени сепарации; 9 — смеситель для ввода пресной воды; 10 — электродегидратор для обессоливания; 11 — сепаратор III (горячей) ступени сепарации; 12 — резервуар товарной нефти; 13; 16; 19 — насос; 14 — автомат по измерению количества и определению качества товарной нефти; 15 — резервуар некондиционной нефти; 17 — блок очистки воды; 18 — резервуар очищенной воды; 20 — блок дегазатора воды с насосом; 21 — узел замера расхода воды; 22 — блок приема и откачки уловленной нефти; 23 — емкость-шламонакопитель; 24 — блок приема и откачки стоков; 25 — мультигидроциклон для отделения от стоячей (дождевой) воды механических примесей. I — товарный нефтяной газ; II — товарная нефть; III — очищенная вода на КНС; IV — пресная вода; V —промысловые ливневые стоки; V I — газ на свечу. Узлы — установки: ГЗУ — замера продукции скважин; УПГ — подготовки газа; УПН — подготовки нефти; УПВ — подготовки воды; УПШ — подготовки шлама или механических примесей. 12.1. Трубопроводы Трубы при добыче применяются для крепления стволов скважин и для образования каналов внутри скважин, подвески оборудования в скважине, прокладки трубопроводов по территории промысла. Основные группы труб: насосно-компрессорные (НКТ); обсадные; 111 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ бурильные; для нефтепромысловых коммуникаций. Насосно-компрессорные трубы. При всех способах эксплуатации скважин подъем жидкости и газа на поверхность происходит обычно по НКТ, которые применительно к способам эксплуатации еще называют фонтанными, компрессорными, насосными, подъемными или лифтовыми. Насосно-компрессорные трубы используются также для различных технологических процессов (например, для солянокислых обработок пластов, разбуривания цементных пробок и т.д.). В таблице 22 представлены основные размеры НКТ, предусмотренные существующими стандартами. Таблица 22 Условный диаметр трубы, мм 27 33 42 48 60 73 89 102 114 Толщина стенки, мм 3 3.5 3.5 4.0 5.0 6.5 ¸ 7.0 8.0 6.5 7.0 Отечественная промышленность выпускает НКТ диаметром 60, 73, 89, 114 мм и муфты к ним из стали группы прочности Д, К и Е, механические свойства которых приведены в таблице 23. Таблица 23 Показатели Группа прочности стали Д К Е Временное сопротивление s в , МПа 655 687 699 Предел текучести s т , МПа: не менее 379 491 552 не более 552 — 758 Относительное удлинение, d , % не менее 14.3 12.0 13.0 Обсадные трубы служат для крепления ствола скважины. По ГОСТ 632-80 отечественные обсадные трубы выпускаются следующих диаметров и толщины (см. таблицу 24). 112 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Таблица 24 Æ, мм 114 127 140 146 168 178 194 d , мм 5.2 ¸ 10.2 5.6 ¸ 10.2 6.2 ¸ 10.5 6.5 ¸ 9.5 7.3 ¸ 12.2 5.9 ¸ 15.0 5.2 ¸ 10.2 219 245 273 299 324 340 351 377 7.6 ¸ 15.1 7.9 ¸ 15.9 7.1 ¸ 16.5 8.5 ¸ 14.8 8.5 ¸ 14.8 8.4 ¸ 15.4 9.0 ¸ 12.0 9.0 ¸ 12.0 406 426 473 508 9.5 ¸ 16.7 10.0 ¸ 12.0 11.1 ¸ 16.1 11.1 ¸ 16.1 Группа прочности стали Д, К, Е, Л, М, Т. Трубы маркируются клеймением и краской. При спуске в скважину обсадные трубы шаблонируют. Обсадные трубы могут применяться вместо НКТ, например, при отборе 5000 ¸ 7000 м 3 /сут. воды из скважин большого диаметра. Иногда для этого используют бурильные трубы. Бурильные трубы приспособлены к длительному свинчиванию-раэвинчиванию. Промышленность выпускает бурильные трубы длиной 6 ± 0.6; 8 ± 0.6; 11.5 ± 0.9 м, наружным диаметром 60, 73, 89, 102 мм. Трубы диаметром 114, 127, 140 и 168 мм выпускают длиной 11.5 ± 0.9 м. Бурильные трубы изготавливаются из той же стали, что и обсадные. Для уменьшения веса бурильной колонны применяют алюминиевые бурильные трубы (АБТ), изготавливаемые из сплава Д16. Применяются колонны гибких труб с наружным диаметром 2 7/8” для бурения забойными двигателями. Для нефтепромысловых коммуникаций используются электросварные, горячекатанные стальные трубы, пригодные по прочности и гидравлическому сопротивлению: трубы стальные бесшовные, горячедеформированные — ГОСТ 8732-78, наружным диаметром от 20 до 550 мм, с толщиной стенок от 2.5 мм и более сталь 10; 10Г 2; 20, 12ХН 2А и др.); трубы стальные сварные для магистральных газонефтепроводов — ГОСТ 20295-85, диаметром от 159 до 820 мм (сталь К34, К50, К60 и др.); отремонтированные трубы нефтяного сортамента (НКТ, обсадные, бурильные); для выкидных линий могут применяться гибкие непрерывные колонны труб диаметром до 2 7/8” . Трубопроводы системы сбора и подготовки нефти и газа предназначены для транспортировки продукции скважин от их устья до сдачи товарно-транспортным организациям, а также для перемещения ее в технологических установках, а трубопроводы системы ППД — для подачи сточных вод от УПВ до нагнетательных скважин. Выкидные линии, нефте- и газосборные коллекторы являются частью общей системы сбора и их общая протяженность достигает сотен километров только лишь по одному промыслу. Трубопроводы классифицируются по следующим признакам. По назначению: а) выкидные линии, транспортирующие продукцию скважины от ее устья до групповой замерной установки; б) нефтегазосборные коллекторы, расположенные от АГЗУ до ДНС; в) нефтесборные коллекторы, расположенные от ДНС до центрального пункта сбора (ЦПС); г) газосборные коллекторы, транспортирующие газ от пункта сепарации до компрессорной станции, обычно расположенной рядом с ЦПС. По величине напора: а) высоконапорные (до 6.27 МПа); б) средненапорные (до 1.55 МПа); в) низконапорные (до 0.588 МПа) и г) безнапорные (самотечные). По типу укладки: а) подземные; б) наземные; в) подвесные; г) подводные. По гидравлической схеме: а) простые, не имеющие ответвлений; б) сложные, имеющие ответвления, к которым относятся также замкнутые (кольцевые) трубопроводы. По характеру заполнения сечения: а) трубопроводы с полным заполнением сечения трубы жидкостью и б) трубопроводы с неполным заполнением сечения. Полное заполнение сечения трубы жидкостью обычно бывает в напорных трубопроводах, а неполное заполнение может быть как в напорных, так и в безнапорных трубопроводах. С полным заполнением сечения жидкостью чаще бывают нефтепроводы, транспортирующих товарную нефть, т.е. без газа, и реже - выкидные линии, где имеет место высокое давление. Нефтесборные коллекторы обычно работают с неполным заполнением сечения трубы нефтью, т.е. верхняя часть сечения коллектора занята газом, выделившимся в процессе движения нефти. Трубопроводы, по которым подается вода в нагнетательные скважины с целью поддержания пластового давления, подразделяются на следующие категории: подводящие, прокладываемые от УПВ 113 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ до кустовых насосных станций (КНС); разводящие, прокладываемые от КНС до нагнетательных скважин. Для нефтепромысловых коммуникаций используются трубы: стальные (сварные, горячекатанные, прерывные и на барабанах), комбинированные (футерованные, металло- пластмассовые), полимерные (стеклопластиковые и др.). Диаметры всех трубопроводов определяются гидравлическими расчетами. Трубопроводы проектируются и изготавливаются в соответствии с правилами, установленными Госгортехнадзором. Исключение составляют трубопроводы для пара, эксплуатируемые с 2 0 абс P МПа, для воды с температурой до 120 °С, временно устанавливаемые трубопроводы со сроком действия до 1 года и некоторые другие. Расчет трубопроводов для системы сбора на механическую прочность сводится к определению толщины стенки, которая была бы минимальной, но в тоже время не допускала разрушения труб при эксплуатации. Минимальная толщина стенки трубы рассчитывается по формуле: d × × × доп вн и 2 σ D P , мм, где н P — давление, при котором производится опрессовка труб, МПа; вн D — номинальный внутренний диаметр трубы, мм; доп s — допускаемое напряжение, принимаемое равным * 9 0 s ( * s — нормативное напряжение растяжения материала трубы, принимаемое по минимальному значению предела текучести); — коэффициент, учитывающий двухосное напряженное состояние труб, определяемый по формуле: доп 2 доп 5 , 0 75 , 0 1 s s s s , где s — абсолютное значение напряжений определяемых по расчетным нагрузкам и воздействиям. Для прямолинейных и упруго-изогнутых участков подземных и наземных трубопроводов при отсутствии продольных и поперечных перемещений, просадок и пучения грунта напряжения от воздействия температуры и внутреннего давления Р вн × × × d s 4 вн вн D P t Е , — коэффициент линейного расширения ( 6 10 * 12 1/°C); E — модуль упругости металла, равный 2.1 ×10 -5 МПа; t — температурный перепад, принимаемый положительным при нагревании. Толщину труб следует принимать не менее 1/140 величины наружного диаметра труб и не менее 4 мм. Расчетная толщина стенки округляется в большую сторону до ближайшей в сортаменте труб. 12.2. Оборудование для замера продукции скважин Для автоматического измерения дебита скважин при однотрубной системе сбора нефти и газа, для контроля за работой скважины но наличию подачи жидкости, а также для автоматической или по команде с диспетчерского пункта блокировки скважины или установки в целом при возникновении аварийных ситуаций применяют блочные автоматизированные групповые замерные установки, в основном двух типов: «Спутник А» и «Спутник Б». Примеры модификации установок первого типа: «Спутник А-16-14/400», «Спутник А- 25 - 10/1500», «Спутник А-40-14/400». В указанных шифрах первая цифра обозначает рабочее давление в кгс/см 2 , на которое рассчитана установка, вторая — число подключенных к групповой установке скважин, третья — наибольший измеряемый дебит в м 3 /сут. «Спутник А» состоит из двух блоков: замерно-переключающего блока, КИП и автоматики. 114 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Принципиальная схема установки «Спутник А» приведена на рисуноке 102. Рисунок 102 — Принципиальная схема автоматизированной групповой замерной установки «Спутник А» Продукция скважин по выкидным линиям 1, последовательно проходя обратный клапан КО и задвижку ЗД, поступает в переключатель скважин типа ПСМ-1М, после которого по общему коллектору 2 через отсекатель ОКГ-4 попадает в сборный коллектор 3, подключенный к системе сбора. В переключателе ПСМ-1М продукция одной из скважин через замерный отвод 4 с отсекателем ОКГ-3 направляется в двухъемкостный замерный гидроциклонный сепаратор ГС, где газ отделяется от жидкости. Газ по трубопроводу 5 проходит через поворотный затвор ЗП, смешивается с замеренной жидкостью и по трубопроводу 6 поступает в общий сборный коллектор 3. Отделившаяся в верхней части газосепаратора ГС жидкость поступает в нижнюю емкость и накапливается в ней. По мере повышения уровня нефти поплавок П поднимается и по достижении верхнего заданного уровня воздействует на поворотный затвор, перекрывая газовую линию 5. Давление в сепараторе повышается и жидкость из сепаратора начинает вытесняться через счетчик расхода ТОР-1. При достижении жидкостью нижнего уровня ЗП открывает газовую линию, давление в сепараторе падает, и начинается новый цикл накопления жидкости в нижней емкости. Измеряемый дебит скважины (в м 3 ) фиксируется электромагнитным счетчиком блока управления. Сигналы на этот блок поступают от счетчика ТОР-1. Переключение скважин на замер осуществляется блоком управления периодически. Длительность замера определяется установкой реле времени. При срабатывании реле времени включается электродвигатель гидропривода ГП-1, и в системе гидравлического управления повышается давление. Гидроцилиндр переключателя ПСМ-1 под воздействием давления гидропривода ГП-1 перемещает поворотный патрубок переключателя, и на замер подключается следующая скважина. Продолжительность замера устанавливается в зависимости от конкретных условий - дебита скважины, способов добычи, состояния разработки месторождения. В установке «Спутник А» турбинный счетчик расхода одновременно служит сигнализатором периодического контроля подачи скважины. При отсутствии подачи скважины, поставленной на замер, блок местной автоматики выдает аварийный сигнал в систему телемеханики об отсутствии за определенный период сигналов от счетчиков ТОР-1. Аварийная блокировка скважин в установке происходит при давлении в общем коллекторе выше допустимого. В этом случае датчик давления ДД, установленный на общем коллекторе, воздействует на клапан КСП-4, давление в системе гидравлического управления отсекателей ОКГ-З и ОКГ-4 падает, и они перекрывают трубопроводы 2 и 4. 115 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Срабатывание отсекателей приводит к повышению давления в переключателе ПСМ-1 и выкидных линиях и к остановке скважин: фонтанных — за счет отсекателей, установленных на выкиде; механизированных — за счет отключения электропривода. На установках типа «Спутник Б» принцип измерения продукции скважин тот же. Примеры обозначения их модификаций: «Спутник Б-40-14/400», «Спутник Б-40-24/400». Первая модификация рассчитана на подключение 14 скважин, вторая — 24. В отличие от «Спутника А» в «Спутнике Б» предусмотрены: возможность раздельного сбора обводненной и не обводненной продукции скважин, определение содержания воды в ней, измерение количества газа, а также дозирование химических реагентов в поток нефти и прием резиновых шаров, запускаемых на скважинах для депарафинизации выкидных линий. Для измерения количества продукции малодебитных скважин находят применение: установки типа БИУС-40; «Спутник АМК-40-8-7,5; АСМА; АСМА-СП-40-8-20; АСМА-Т; Микрон» и др. Установки типа БИУС-40 (рисунок 103) разработаны в четырех модификациях БИУС-40-50, БИУС-40-2-100, БИУС-40-3-100 и БИУС-40-4-100 для подключения собственно одной, двух, трех и четырех скважин. Установка БИУС-40 состоит из технологического блока и блока управления. Газожидкостная смесь по выкидному коллектору скважин и трубопроводу 11 поступает в сепарационную ёмкость 1, где происходит отделение газа от жидкости. Газ отводится в выходной трубопровод 9 и смешивается с жидкостью. Расход газа для замера газового фактора, определяется переносным дифманометром по диафрагме 4. При определенном уровне накопленной в сепараторе жидкости поплавок через систему рычагов перекрывает заслонку 3 на газовой линии и давление в сепараторе повышается. При достижении перепада давления между сепаратором и выходным трубопроводом, установленного регулятором расхода 15, клапан последнего открывается и жидкость под избыточным давлением продавливается через счетчик ТОР-1-150 16 в выходной трубопровод. Рисунок 103 — Принципиальная схема установки БИУС-40 Регулятор расхода, независимо от дебита подключенной скважины, обеспечивает циклическое прохождение жидкости через счетчик с расходами, указанными в документации счетчика. При определенном нижнем уровне поплавок через систему рычагов открывает заслонку, давление в сепараторе снижается, клапан регулятора расхода перекрывает нефтяную линию и цикл повторяется. Счетчик ТОР-1-50 интегратором суммирует замеренные сливаемые порции жидкости и преобразовывает их объёмы в электрический сигнал, регистрируемый в счетчике блока управления. При повышении или понижении допустимого давления на установке электро-контактный манометр 14 с блоком управления формирует аварийный сигнал, загорается лампочка в блоке управления, и при наличии КП телемеханики сигнал может передаваться в диспетчерский пульт. Предохранительный клапан 2 не допускает превышение рабочего давления внутри емкости. Обогреватель 8 и вентилятор 10 обеспечивают в зимнее время нормальную работу установки. Перегородка 5 и сетка 17 защищает турбинку счетчика от инородных тел. Инородные тела и парафин, накопленные в грязевом отсеке, 116 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ периодически сбрасываются через задвижку 6 в выходной трубопровод. Решетка 18 служит для очистки газа от капельной жидкости. При необходимости отключения установки продукция скважины направляется по байпасу закрытием задвижек 13 и 7 и открытием задвижки 12. В настоящее время выпускается более 10 модификаций замерных установок типа «Спутник». 12.3. Оборудование для отделения нефти от газа и свободной воды В процессе подъема жидкости из скважин и транспорта ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается и обычно в несколько десятков раз превышает объем жидкости. Поэтому при низких давлениях их совместное хранение, а иногда и сбор становятся нецелесообразными. Приходиться осуществлять их раздельный сбор и хранение. Процесс отделения газа от нефти называется сепарацией. Аппарат, в котором происходит отделение газа от продукции нефтяных скважин, называют газосепаратором. В современных системах сбора нефти и газа газосепараторами оснащаются все блочные автоматизированные групповые замерные установки (за исключением установок, оснащенных массовыми расходомерами), дожимные насосные станции и центральные пункты сбора и подготовки нефти, газа и воды. На блочных автоматизированных замерных установках отделение газа от нефти осуществляется только с целью раздельного измерения дебита скважин по жидкости и газу. После измерения нефть и газ снова смешиваются и подаются в общий нефтегазовый коллектор. Часто отвод свободного газа от нефти осуществляется в нескольких местах. Каждый пункт вывода отсепарированного газа называется ступенью сепарации газа. Многоступенчатая сепарация применяется для постепенного отвода свободного газа по мере снижения давления. Она применяется при высоких давлениях на устье скважин. Нефтегазовую смесь из скважины направляют сначала в газосепаратор высокого давления, в котором из нефти выделяется основная масса газа. Этот газ может транспортироваться на большие расстояния под собственным давлением. Из сепаратора высокого давления нефть поступает в сепаратор среднего и низкого давления для окончательного отделения от газа. Сепарация газа от нефти может происходить под влиянием гравитационных, инерционных сил и за счет селективной смачиваемости нефти. В зависимости от этого и различают гравитационную, инерционную и пленочную сепарации, а газосепараторы — гравитационные, гидроциклонные и жалюзийные. Гравитационная сепарация осуществляется вследствие разности плотностей жидкости и газа, т.е. под действием их силы тяжести. Газосепараторы, работающие на этом принципе, называются гравитационными. Инерционная сепарация происходит при резких поворотах газонефтяного потока. В результате этого жидкость, как более инерционная, продолжает двигаться по прямой, а газ меняет свое направление. В результате происходит их разделение. На этом принципе построена работа гидроциклонного газосепаратора, осуществляемая подачей газонефтяной смеси в циклонную головку, в которой жидкость отбрасывается к внутренней поверхности и затем стекает вниз в нефтяное пространство газосепаратора, а газ двигается по центру циклона. Пленочная сепарация основана на явлении селективного смачивания жидкости на металлической поверхности. При прохождении потока газа с некоторым содержанием нефти через жалюзийные насадки (каплеуловители) капли нефти, соприкасаясь с металлической поверхностью, смачивают ее и образуют на ней сплошную жидкостную пленку. Жидкость на этой пленке держится достаточно хорошо и при достижении определенной толщины начинает непрерывно стекать вниз. Это явление называется эффектом пленочной сепарации. Жалюзийные сепараторы работают на этом принципе. Наибольшее распространение на нефтяных месторождениях получили горизонтальные сепараторы, характеризующие повышенной пропускной способностью при одном и том же объеме аппарата, лучшим качеством сепарации, простотой обслуживания и осмотра по сравнению с вертикальными. В настоящее время выпускаются двухфазные горизонтальные сепараторы типа НГС и типа УБС. Наряду с двухфазными организовано производство трехфазных сепараторов, которые, помимо отделения газа от нефти, служат также для отделения и сброса свободной воды. К трехфазным сепараторам относятся установки типа УПС. Перечисленные сепарационные установки служат в 117 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ качестве технологического оборудования центральных пунктов сбора и подготовки нефти, газа и воды (ЦППН). В тех случаях, когда на месторождении или группе месторождений пластовой энергии недостаточно для транспортировки нефтегазовой смеси до ЦППН, применяются сепарационные установки с насосной откачкой или дожимные насосные станции (ДНС). Сепараторы типа НГС предназначены для отделения газа от продукции нефтяных скважин на первой и последующей ступенях сепарации нефти, включая горячую сепарацию на последней ступени. Выпускается нормальный ряд сепараторов НГС с пропускной способностью по жидкости 2000 ¸ 30000 т/сут. В таблице 24. приведены основные технические данные сепарационных установок типа НГС. Сепаратор типа НГС (рисунок 104) состоит из горизонтальной емкости 1, оснащенной патрубками для входа продукции 2, для выхода нефти 10 и газа 7. Внутри емкости непосредственно у патрубка для входа нефтегазовой смеси смонтированы распределительное устройство 3 и наклонные желоба (дефлекторы) 4 и 5. Возле патрубка, через который осуществляется выход газа, установлены горизонтальный 8 и вертикальный 6 сетчатые отбойники. Кроме того, аппарат снабжен штуцерами и муфтами для монтажа приборов сигнализации и автоматического регулирования режима работы. Газонефтяная смесь поступает в аппарат через входной патрубок 3, изменяет свое направление на 90°, и при помощи распределительного устройства нефть вместе с остаточным газом направляется сначала в верхние наклонные желоба 4, а затем в нижние 5. Отделившийся из нефти газ проходит сначала вертикальный каплеотбойник 6, а затем горизонтальный 8. Эти каплеотбойники осуществляют тонкую очистку газа от капельной жидкости (эффективность свыше 99 %), что позволяет отказаться от установки дополнительного сепаратора газа. Выделившийся в сепараторе газ через патрубок 7, задвижку и регулирующий клапан (на рисунке 104 не показаны) поступает в газосборную сеть. Таблица 25 Установка Наибольшая пропускная способность по нефти, т/сут Наибольшая пропускная способность по газу, тыс. м 3 /сут НГС6-1400 НГС16-1400 НГС25-1400 НГС40-1400 НГС64-1400 2000 150 260 330 420 560 НГС6-1600 НГС16-1600 НГС25-1600 НГС40-1600 НГС64-1600 5000 340 590 750 960 1260 НГС6-2200 НГС16-2200 НГС25-2200 НГС40-2200 НГС64-2200 10000 600 1000 1300 1700 2200 НГС6-2600 НГС16-2600 НГС25-2600 НГС40-2600 20000 1000 1800 2300 3000 НГС6-3000 НГС16-3000 НГС25-3000 НГС40-3000 30000 1500 2700 3400 4400 В указанных цифрах первая цифра обозначает рабочее давление, вторая цифра — диаметр сепаратора (в мм). Отсепарированная нефть, скопившаяся в нижней секции сбора жидкости сепаратора, через выходной патрубок 10 направляется на следующую ступень сепарации или, в случае использования 118 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ аппарата на последней ступени, в резервуар. Для устранения возможности воронкообразования и попадания газа в выкидную линию над патрубком выхода нефти устанавливается диск 9. Комплекс приборов и средств автоматизации обеспечивает: автоматическое регулирование рабочего уровня нефтегазовой смеси в сепараторе; автоматическую защиту установки (прекращения подачи нефтегазовой смеси в сепаратор) при: а) аварийном повышении давления в сепараторе; б) аварийно-высоком уровне жидкости в сепараторе; сигнализацию в блок управления об аварийных режимах работы установки. Рисунок 104 — Нефтегазовый сепаратор типа НГС Сепаратор нефтегазовый НГС по ГП 805 предназначен для сепарации газонефтяной смеси на первой, промежуточной и концевой ступенях в системах сборов и установках подготовки нефти. Техническая характеристика: Объем аппарата, м 3 6.3; 12.3; 25; 50; 100; 150 Производительность по нефти, м 3 /сут, не более 20000 Рабочее давление, МПа 0.4; 0.8; 1.4; 2.2; 3.6 Содержание капельной жидкости в потоке газа на выходе, г/м 3 не более 0.1 Содержание свободного газа в нефти на выходе, % об. 1 Масса, кг, не более 93000 Сепаратор НГС по ГП 805 разработан взамен НГС по ГП 496 и имеет следующие преимущества (на примере аппарата V = 100 м 3 ): Таблица 26 Показатели НГС по ГП 496 НГС по ГП 805 Производительность по нефти, м 3 /сут 10000 12000 Объем аппарата, м 3 100 100 Производительность по газу, м 3 /сут, Р=0.7 МПа 1000000 1500000 Содержание капельной жидкости в потоке газа на выходе, г/м 3 2 ¸ 3 0.1 Сепараторы центробежные вертикальные СЦВ-500М, СЦВ-1000М (А.С. 787065, 986461) предназначены для окончательной очистки газа от капельной жидкости после газонефтяных сепараторов. Сравнительная характеристика сепараторов СЦВ-1000/16 и НГС при использовании его в качестве газосепаратора. Таблица 27 Показатели НГС-1-16-3000 по ГП 496 СЦВ-1000/16 119 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Производительность по газу, млн. м 3 /сут 2.5 2.5 Рабочее давление, МПа 1.6 1.6 Объем аппарата, м 3 100 3 Масса, кг 31000 2500 Степень очистки газа, г/м 3 0.5 0.05 Установки блочные сепарационные УБС-3000/6; УБС-1500/6; УБС-1500/14; УБС-6300/6; УБС- 6300/14; УБС-16000/6; УБС-10000/6 обычно состоят из технологической емкости, каплеотбойника, депульсатора, технологической обвязки трубопроводов, запорно-регулирующей арматуры и системы автоматизации (рисунок 105, таблица 28). Таблица 28 Шифр установки Условный проход, мм Д у1 Д у2 Д у3 Д у4 Д у5 Д у6 Д у7 Д у8 УБС-1500/6 500 500 125 150 50 150 250 80 УБС-1500/14 500 500 125 150 50 150 250 80 УБС-6300/6 500 500 200 250 80 250 400 150 УБС-6300/14 500 500 200 250 100 250 400 150 УБС-10000/6 600 700 300 300 100 300 400 150 УБС-10000/14 600 700 300 300 150 300 400 150 УБС-16000/6 600 700 300 300 100 300 500 150 УБС-16000/14 600 700 300 300 150 300 500 150 Рисунок 105 — Принципиальная схема сепарационной блочной установки 1 — нефтегазовая смесь; 2 — газ; 3 — нефть; 4 — дренаж; 5 — пар; I — депульсатор; II — каплеотбойник; III — технологическая емкость. Технологическая емкость, депульсатор, каплеотбойник с устройством предварительного отбора газа системой обвязки трубопроводами и запорно-регулирующей арматуры объединены в сепарационный блок. Для обслуживания установки предусмотрена площадка. Работа установки основана на предварительном отборе газа из газонефтяной смеси в депульсаторе I, окончательном разгазировании в технологической емкости III и окончательной очистке газа от капельной жидкости в каплеотбойнике II. Газонефтяная смесь от скважин поступает в депульсатор I, где происходит разделение расслоившихся в подводящем трубопроводе нефти и газа. Отделившийся газ отводится в каплеотбойник II, а нефть поступает в технологическую емкость III. В каплеотбойнике газ проходит через струнные отбойники, очищается от капельной нефти и через регулятор давления направляется в газопровод. Собранная в каплеотбойнике жидкость стекает по 120 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ патрубкам в технологическую емкость. Из последней нефть проходит через две перегородки из просечно-вытяжных листов, способствующих вытеснению промежуточного слоя между пузырьками газа, их коалесценции и отделению остаточного газа от нефти. Окончательно отсепарированная нефть направляется через выходной патрубок и регулятор уровня жидкости в нефтепровод. При необходимости подачи газа из депульсатора в каплеотбойник через газовое пространство технологической емкости на газовой линии между каплеотбойником и депульсатором предусмотрена задвижка, а между депульсатором и технологической емкостью - газопровод. Технологический процесс на установке полностью автоматизирован и обеспечивает: автоматическое регулирование давления и уровня нефти в технологической емкости; сигнализацию предельных значений давления верхнего и нижнего уровней нефти в технологической емкости; местный контроль уровня температуры нефти и давления в технологической емкости; выдачу сигнала на автоматическое закрытие приемной линии установки при достижении верхнего предельного уровня нефти; формирование общего аварийного сигнала на диспетчерский пункт. Сепарационные установки с предварительным сбросом воды типа УПС предназначены для отделения газа от обводненной нефти и сброса свободной пластовой воды с одновременным учетом количества обезвоженной нефти и воды, выходящих из аппарата. Выпускаются установки типа УПС на рабочее давление 0.6 МПа следующих модификаций: УПС-3000/6М, УПС-А-3000/6, УПС-6300/6М и УПС-10000/6М. Одновременно разработаны все модификации УПС и на рабочее давление 1.6 МПа. В шифре установок приняты следующие обозначения: УПС — установка с предварительным сбросом воды; А — в антикоррозионном исполнении; первая цифра после букв — пропускная способность по жидкости (м 3 /сут); вторая цифра — допустимое рабочее давление; М — модернизированная. Автоматизированные установки выполнены в моноблоке и состоят из следующих основных частей: блока сепарации и сброса воды, запорно-регулирующей арматуры, системы контроля и управления (рисунок 106). Блок сепарации и сброса воды глухой сферической перегородкой разделен на два отсека — сепарационный А и отстойный Б. Каждый отсек имеет люк-лаз, предохранительный клапан и дренажные штуцеры. В сепарационном отсеке для более полной сепарации и предотвращения пенообразования предусмотрена нефтеразливная полка 2. Для равномерного потока в параллельно работающих установках в сепарационных и отстойных отсеках имеются штуцеры для сообщения их по жидкости (в нижней части) и газу (в верхней части). Рисунок 106 — Принципиальная схема установок типа УПС-8000 и УПС-6300 В отстойном отсеке для более полного использования объема емкости имеются распределитель 3 жидкости на входе, перфорированная труба со штуцером для вывода воды 8 и два штуцера 5 и 6 для вывода нефти. Расположение штуцеров для вывода нефти позволяет осуществлять, работу установок в 121 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ режимах полного и неполного заполнения. На установке УПС-6300 применяется выносной каплеотбойник 4, устанавливаемый над отстойной секцией. Работа установки происходит следующим образом. Продукция скважин поступает в сепарационный отсек А по соплу 1 и нефтеразливной полке 2, где происходит отделение газа от жидкостной фазы. Отделившийся нефтяной газ через регулятор уровня, отводится в отсек Б, откуда через каплеотбойник 4 и регулятор давления — в газовый коллектор. В случае применения установки на I ступени сепарации предусматривается узел предварительного отбора газа (депульсатор). При использовании установки на II ступени сепарации монтаж узла предварительного отбора газа не требуется. Водонефтяная эмульсия из отсека А передавливается в отсек Б под действием давления газа. Допустимый перепад давления между отсеками Б и А не более 0.2 МПа (в зависимости от длины каплеобразователя между отсеками). Водоняфтяная эмульсия поступает в отстойный отсек Б через входной распределитель 3. При этом основная часть струй, вытекающих из распределителя, движется радиально, а меньшая часть — в направлении ближайшего эллиптического днища аппарата. Доходя до стенок аппарата, и теряя кинетическую энергию, струи эмульсии отражаться и принимают горизонтальное направление вдоль аппарата. Отстоявшаяся вода отводится через перфорированный трубопровод 8. Предварительно обезвоженная нефть выводится через штуцеры 5 и 6, связанные с перфорированной трубой 7, расположенной в верхней части емкости. Система контроля и у правления должна осуществлять: регулировавшие уровня «нефть-газ» на уровне 2400 мм; регулирование уровня «нефть-вода» на уровне 900 мм; регулирование давления в технологической емкости; измерение количества предварительно обезвоженной нефти; измерение количества сбрасываемой воды; измерение количества оборотной воды; сигнализацию достижения заданных значений давления и предельного уровня нефти в емкости; аварийную отсечку по входу продукта при достижении уровня нефти в аппарате 2600 мм и заданном давлении; измерение давления и температуры. При работе в режиме полного заполнения не осуществляется регулирования уровня «нефть-газ» и сигнализация аварийного уровня, предварительно обезвоженная нефть отводится через верхний щтуцер 5, связанный с перфорированной трубой, а штуцер 6 закрывается. Сепарационные блочные установки с насосной откачкой предназначены для сепарации нефти от газа и подачи от сепарированной нефти под напором насосов на объекты подготовки нефти в системах герметизированного сбора и подготовки нефти, газа и воды. Установки в основном состоят из сепарационного блока, блока коллектора, блока измерения и регулирования, комплекса системы автоматизации, межблочной обвязки коммуникаций, укрытия и площадок обслуживания. В качестве сепараторов приняты сепараторы соответствующей производительности и рабочих давлений. Работа установки основана на предварительном отборе газа из газонефтяной смеси в депульсаторе, окончательном разгазировании в технологической емкости и подаче нефти под напором насосов на объекты подготовки нефти. В таблице 28 приведены основные технические данные трех типов сепарационных установок. Первые два типа установок включают два насосных блока и третий тип — три насосных блока. Отделившийся газ отводится в каплеотбойник, где разделяется на два потока и, проходя через два сетчатых отбойника, очищается от капельной нефти и направляется в газопровод. Дожимные насосные станции КДНС-1000БТ и ДНС-5000БТ предназначены для герметизированного сбора и сепарации продукции скважин, частичного обезвоживания нефти и транспортировки ее до установок подготовки нефти, очистки воды и закачки ее в пласт. Новые ДНС позволяют использовать малолюдную технологию на вновь осваиваемых месторождениях; в несколько раз снизить площади застройки, занимаемые ДНС; снизить энергоемкость и металлоемкость при добыче одной тонны нефти. Система автоматического управления новых ДНС с использованием микропроцессорной техники позволяет вести сбор, обработку, отображение, регистрацию технологических параметров, выдачу команд управления исполнительным органам оборудования, автоматическое включение 122 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ резервного питания, оптимизацию технологических режимов, обмен информацией и принятие команд с верхнего иерархического уровня. Технические характеристики сепарационных блочных установок типа УБСН Таблица 29 Показатели УБСН-400-1.6/4 УБСН-1600-1.6/4 УБСН-6300-1.6/4 Температура окружающей среды, К ( °С) 233 ¸ 313 (-40 ¸ +40) Максимальная производительность по сырью, м 3 /с (м 3 /сут) 0.0092 (800) 0.018 (1600) 0.036 (3150) Максимальное рабочее давление нагнетания, МПа 4.0 Рабочая среда: сырая нефть Максимальная температура, К ( °С) 323 (50) кинетическая вязкость, м 2 /с (сСт) 0.00015 (150) плотность, кг/м 3 750 ¸ 900 Максимальное содержание в рабочей среде (объемных), %: сероводорода углекислого газа 0,01 1 Максимальный газовый фактор при нормальных условиях, м 3 /м 3 200 Максимальный унос свободного газа нефтью (объемных), % 2 Максимальный унос капельной нефти газом, м 3 /м 3 0.1 ×10 -6 Максимальная потребляемая мощность силовым электрооборудованием, кВт 132 200 315 Режим работы непрерывный Объем технологической емкости, м 3 10 40 40 Габариты, мм 16090 ´13510´´4748 21765´14450´´6148 22010 ´15106´´6880 Масса, кг, не более 26600 44500 61000 Кустовая дожимная насосная станция КДНС-1000БТ, номинальной производительностью 1000 м 3 /сутки по жидкости, предназначена для размещения непосредственно на кусте нефтяных скважин, либо на отдельных небольших нефтяных месторождениях. Дожимная насосная станция ДНС-5000БТ, номинальной производительностью 5000 м 3 /сутки по жидкости, предназначена для размещения в системе сбора крупных и средних месторождений. Технологический процесс и оборудование в схеме ДНС-5000БТ разработаны на основе эксплуатации и проектирования ДНС на месторождениях Урало-Поволжья и Западной Сибири. Технические характеристики КДНС-1000БТ и ДНС-5000БТ Таблица 30 № Параметры Единицы измерения Величина КДНС-1000БТ ДНС-5000БТ 1 Производительность: по жидкости по газу по закачке воды м 3 /сут. тыс. м 3 /сут. м 3 /сут. 1000 250 1800 5000 1000 10800 2 Содержание на выходе: воды в нефти не более мехпримесей и нефти в воде, не более капельной жидкости в газе, не более % мг/л г/м 3 10 30 0,1 10 30 0,1 3 Давление на выходе не более МПа 1,4 1,4 123 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Состав основного оборудования КДНС-1000БТ и ДНС-5000БТ Таблица 31 № КДНС-1000БТ № ДНС-5000БТ 1 Сепаратор-депульсатор вертикальный объемом 6.3 м 3 1 Нефтегазовый сепаратор НГСВ объемом 100 м 3 2 Аппарат совместной подготовки нефти и воды объемом 40 м 3 2 Сепаратор-каплеуловитель СДВ-1000/16 3 Насосы погружные центробежные для откачки нефти: УЭЦН-6-1000-750 для откачки воды: УЭЦН-16-2000-1400 3 Гидроциклоны «Буран» 4 Узлы учета нефти, газа и воды 4 Отстойник очистки воды ОВ-0.6-100 5 Буферная емкость объемом 6.3 м 3 5 Насосы нефтяные ЦНС-300-240 3шт. 6 Дренажная емкость 6 Насосы водяные ЦНС-180-1900 4 шт. 7 Регулирующая и запорная арматура 7 Узел учета нефти, газа, воды 8 Система автоматического управления 8 Реагентный блок 9 Буферные емкости объемом 30 м 3 10 Дренажная емкость ЕП-40 11 Регулирующая и запорная арматура 12 Система автоматического управления Применяются и другие типы ДНС, например, ДНС-7000, ДНС-14000 и ДНС-20000. Число в каждом типоразмере ДНС указывает подачу рабочих насосных агрегатов по жидкости (в м 3 /сут). На всех ДНС данного типа в качестве буферной ёмкости используется горизонтальные сепараторы объёмом 100 м 3 и насосные агрегаты 8НД-9 ´З с электродвигателем типа А-114-2М. Расчет газосепараторов на прочность Толщина стенки газосепаратора — С D P S × × s доп вн 2 , мм, где C — принимается равным 2 ¸ 3 мм; P — давление в газосепараторе, МПа; вн D — внутренний диаметр газосепаратора, мм; — 0.95 (для сварных корпусов); доп s — допускаемое напряжение на растяжение материала корпуса газосепаратора, МПа. Рисунок 107 — Расчетная схема газосепаратора К × * доп s s , где * s — нормативное допускаемое напряжение; 9 0 1 ¸ К — коэффициент условий нагружения газосепараторов; 562 387 * ¸ s МПа, в зависимости от марки стали. Стальные эллиптические днища изготавливают (ГОСТ9617-76) диаметром от 159 до 4000 мм; отношение высоты эллиптической части днища к диаметру принято 25 0 / D H 124 vk.com/club152685050 | vk.com/id446425943 НЕФТЕГАЗОВОЕ ОБОРУДОВАНИЕ Толщина стенки эллиптических днищ определяется — С R P S × × s доп 2 , мм, где R — радиус кривизны в вершине днища, равный H D 4 / 2 Для стандартных днищ, при отношении высоты днища к его диаметру, равном 0.25, D R Днища стальные диаметром до 1600 мм, изготавливают из цельного листа, для них 1 . Толщина днища принимается не меньше, чем у цилиндрической оболочки. |