Главная страница
Навигация по странице:

  • ВАВИЛОНИЯ И ЕГИПЕТ Вавилония.

  • ГРЕЧЕСКАЯ МАТЕМАТИКА Классическая Греция.

  • ИНДИЯ И АРАБЫ

  • СРЕДНИЕ ВЕКА И ВОЗРОЖДЕНИЕ Средневековая Европа.

  • Возрождение.

  • НАЧАЛО СОВРЕМЕННОЙ МАТЕМАТИКИ

  • СОВРЕМЕННАЯ МАТЕМАТИКА

  • Неевклидова геометрия.

  • Математическая строгость.

  • Список литературы

  • История. История математики. Содержание Введение 3 вавилония и египет 3 греческая математика 5 индия и арабы 9 9 средние века и возрождение 10 10 начало современной математики 12 12 современная математика 13 Заключение 18 Список литературы 19 Введение


    Скачать 102 Kb.
    НазваниеСодержание Введение 3 вавилония и египет 3 греческая математика 5 индия и арабы 9 9 средние века и возрождение 10 10 начало современной математики 12 12 современная математика 13 Заключение 18 Список литературы 19 Введение
    АнкорИстория
    Дата04.01.2022
    Размер102 Kb.
    Формат файлаdoc
    Имя файлаИстория математики.doc
    ТипРеферат
    #323833

    Содержание


    Введение 3

    ВАВИЛОНИЯ И ЕГИПЕТ 3

    ГРЕЧЕСКАЯ МАТЕМАТИКА 5

    ИНДИЯ И АРАБЫ 9

    9

    СРЕДНИЕ ВЕКА И ВОЗРОЖДЕНИЕ 10

    10

    НАЧАЛО СОВРЕМЕННОЙ МАТЕМАТИКИ 12

    12

    СОВРЕМЕННАЯ МАТЕМАТИКА 13

    Заключение 18

    Список литературы 19


    Введение
    Актуальность данной темы заключается в том, что на современном этапе математика является одной из главных и ведущих наук, имеющих древнюю историю и множество предпосылок к изучению

    Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев.

    Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления.

    Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.

    Целью данной работы является исследование истории математики с древних времен и до наших дней.

    Задачи:

    1. Изучение истории математики с древних времен.

    2. Изучение математики средневековья.

    3. Рассмотрение современного этапа развития.

    Методы исследования – анализ и синтез научной литературы.

    Теоретическую основу данного исследования составляют труды отечественных и зарубежных авторов в области исследуемого вопроса.

    Практическая значимость данного исследования заключается в том, что его результаты могут быть использованы в дальнейшей научной и профессиональной деятельности.


    ВАВИЛОНИЯ И ЕГИПЕТ

    Вавилония. Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые т.н. клинописными текстами, которые датируются от 2000 до н.э. и до 300 н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ и религиозных праздников. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии. 1

    Вавилоняне создали и систему счисления, использовавшую для чисел от 1 до 59 основание 10. Символ, обозначавший единицу, повторялся нужное количество раз для чисел от 1 до 9. Для обозначения чисел от 11 до 59 вавилоняне использовали комбинацию символа числа 10 и символа единицы. Для обозначения чисел начиная с 60 и больше вавилоняне ввели позиционную систему счисления с основанием 60. Существенным продвижением стал позиционный принцип, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. Примером могут служить значения шестерки в записи (современной) числа 606. Однако нуль в системе счисления древних вавилонян отсутствовал, из-за чего один и тот же набор символов мог означать и число 65 (60 + 5), и число 3605 (602 + 0 + 5). Возникали неоднозначности и в трактовке дробей. Например, одни и те же символы могли означать и число 21, и дробь 21/60 и (20/60 + 1/602). Неоднозначность разрешалась в зависимости от конкретного контекста.

    Вавилоняне составили таблицы обратных чисел (которые использовались при выполнении деления), таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней. Им было известно хорошее приближение числа . Клинописные тексты, посвященные решению алгебраических и геометрических задач, свидетельствуют о том, что они пользовались квадратичной формулой для решения квадратных уравнений и могли решать некоторые специальные типы задач, включавших до десяти уравнений с десятью неизвестными, а также отдельные разновидности кубических уравнений и уравнений четвертой степени. На глиняных табличках запечатлены только задачи и основные шаги процедур их решения. Так как для обозначения неизвестных величин использовалась геометрическая терминология, то и методы решения в основном заключались в геометрических действиях с линиями и площадями. Что касается алгебраических задач, то они формулировались и решались в словесных обозначениях.

    Около 700 до н.э. вавилоняне стали применять математику для исследования движений Луны и планет. Это позволило им предсказывать положения планет, что было важно как для астрологии, так и для астрономии.

    ГРЕЧЕСКАЯ МАТЕМАТИКА

    Классическая Греция. С точки зрения 20 в. родоначальниками математики явились греки классического периода (6–4 вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений. Напротив, в дедуктивном рассуждении новое утверждение выводится из принятых посылок способом, исключавшим возможность его неприятия.2

    Настаивание греков на дедуктивном доказательстве было экстраординарным шагом. Ни одна другая цивилизация не дошла до идеи получения заключений исключительно на основе дедуктивного рассуждения, исходящего из явно сформулированных аксиом. Одно из объяснений приверженности греков методам дедукции мы находим в устройстве греческого общества классического периода. Математики и философы (нередко это были одни и те же лица) принадлежали к высшим слоям общества, где любая практическая деятельность рассматривалась как недостойное занятие. Математики предпочитали абстрактные рассуждения о числах и пространственных отношениях решению практических задач. Математика делилась на арифметику – теоретический аспект и логистику – вычислительный аспект. Заниматься логистикой предоставляли свободнорожденным низших классов и рабам.

    Греческая система счисления была основана на использовании букв алфавита. Аттическая система, бывшая в ходу с 6–3 вв. до н.э., использовала для обозначения единицы вертикальную черту, а для обозначения чисел 5, 10, 100, 1000 и 10 000 начальные буквы их греческих названий. В более поздней ионической системе счисления для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. Кратные 1000 до 9000 обозначались так же, как первые девять целых чисел от 1 до 9, но перед каждой буквой ставилась вертикальная черта. Десятки тысяч обозначались буквой М (от греческого мириои – 10 000), после которой ставилось то число, на которое нужно было умножить десять тысяч

    Дедуктивный характер греческой математики полностью сформировался ко времени Платона и Аристотеля. Изобретение дедуктивной математики принято приписывать Фалесу Милетскому (ок. 640–546 до н.э.), который, как и многие древнегреческие математики классического периода, был также философом. Высказывалось предположение, что Фалес использовал дедукцию для доказательства некоторых результатов в геометрии, хотя это сомнительно.

    Другим великим греком, с чьим именем связывают развитие математики, был Пифагор (ок. 585–500 до н.э.). Полагают, что он мог познакомиться с вавилонской и египетской математикой во время своих долгих странствий. Пифагор основал движение, расцвет которого приходится на период ок. 550–300 до н.э. Пифагорейцы создали чистую математику в форме теории чисел и геометрии. Целые числа они представляли в виде конфигураций из точек или камешков, классифицируя эти числа в соответствии с формой возникающих фигур («фигурные числа»). Слово «калькуляция» (расчет, вычисление) берет начало от греческого слова, означающего «камешек». Числа 3, 6, 10 и т.д. пифагорейцы называли треугольными, так как соответствующее число камешков можно расположить в виде треугольника, числа 4, 9, 16 и т.д. – квадратными, так как соответствующее число камешков можно расположить в виде квадрата, и т.д.

    Из простых геометрических конфигураций возникали некоторые свойства целых чисел. Например, пифагорейцы обнаружили, что сумма двух последовательных треугольных чисел всегда равна некоторому квадратному числу. Они открыли, что если (в современных обозначениях) n2 – квадратное число, то n2 + 2n +1 = (n + 1)2. Число, равное сумме всех своих собственных делителей, кроме самого этого числа, пифагорейцы называли совершенным. Примерами совершенных чисел могут служить такие целые числа, как 6, 28 и 496. Два числа пифагорейцы называли дружественными, если каждое из чисел равно сумме делителей другого; например, 220 и 284 – дружественные числа (и здесь само число исключается из собственных делителей).

    Для пифагорейцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2 согласно их воззрению означало различие и потому отождествлялось с мнением. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей.

    Пифагорейцы также открыли, что сумма некоторых пар квадратных чисел есть снова квадратное число. Например, сумма 9 и 16 равна 25, а сумма 25 и 144 равна 169. Такие тройки чисел, как 3, 4 и 5 или 5, 12 и 13, называются пифагоровыми числами. Они имеют геометрическую интерпретацию, если два числа из тройки приравнять длинам катетов прямоугольного треугольника, то третье число будет равно длине его гипотенузы. Такая интерпретация, по-видимому, привела пифагорейцев к осознанию более общего факта, известного ныне под названием теоремы Пифагора, согласно которой в любом прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Рассматривая прямоугольный треугольник с единичными катетами, пифагорейцы обнаружили, что длина его гипотенузы равна , и это повергло их в смятение, ибо они тщетно пытались представить число в виде отношения двух целых чисел, что было крайне важно для их философии. Величины, непредставимые в виде отношения целых чисел, пифагорейцы назвали несоизмеримыми; современный термин – «иррациональные числа». Около 300 до н.э. Евклид доказал, что число несоизмеримо. Пифагорейцы имели дело с иррациональными числами, представляя все величины геометрическими образами. Если 1 и считать длинами некоторых отрезков, то различие между рациональными и иррациональными числами сглаживается. Произведение чисел и есть площадь прямоугольника со сторонами длиной и .Мы и сегодня иногда говорим о числе 25 как о квадрате 5, а о числе 27 – как о кубе 3.

    Древние греки решали уравнения с неизвестными посредством геометрических построений. Были разработаны специальные построения для выполнения сложения, вычитания, умножения и деления отрезков, извлечения квадратных корней из длин отрезков; ныне этот метод называется геометрической алгеброй.

    Приведение задач к геометрическому виду имело ряд важных последствий. В частности, числа стали рассматриваться отдельно от геометрии, поскольку работать с несоизмеримыми отношениями можно было только с помощью геометрических методов. Геометрия стала основой почти всей строгой математики по крайней мере до1600. И даже в 18 в., когда уже были достаточно развиты алгебра и математический анализ, строгая математика трактовалась как геометрия, и слово «геометр» было равнозначно слову «математик».

    ИНДИЯ И АРАБЫ

    Преемниками греков в истории математики стали индийцы. Индийские математики не занимались доказательствами, но они ввели оригинальные понятия и ряд эффективных методов. Именно они впервые ввели нуль и как кардинальное число, и как символ отсутствия единиц в соответствующем разряде. Махавира (850 н.э.) установил правила операций с нулем, полагая, однако, что деление числа на нуль оставляет число неизменным. Правильный ответ для случая деления числа на нуль был дан Бхаскарой (р. в 1114), ему же принадлежат правила действий над иррациональными числами. Индийцы ввели понятие отрицательных чисел (для обозначения долгов). Самое раннее их использование мы находим у Брахмагупты (ок. 630). Ариабхата (р. 476) пошел дальше Диофанта в использовании непрерывных дробей при решении неопределенных уравнений.

    Наша современная система счисления, основанная на позиционном принципе записи чисел и нуля как кардинального числа и использовании обозначения пустого разряда, называется индо-арабской. На стене храма, построенного в Индии ок. 250 до н.э., обнаружено несколько цифр, напоминающих по своим очертаниям наши современные цифры.

    Около 800 индийская математика достигла Багдада. Термин «алгебра» происходит от начала названия книги Аль-джебр ва-л-мукабала (Восполнение и противопоставление), написанной в 830 астрономом и математиком аль-Хорезми3. В своем сочинении он воздавал должное заслугам индийской математики. Алгебра аль-Хорезми была основана на трудах Брахмагупты, но в ней явственно различимы вавилонское и греческое влияния. Другой выдающийся арабский математик Ибн аль-Хайсам (ок. 965–1039) разработал способ получения алгебраических решений квадратных и кубических уравнений. Арабские математики, в их числе и Омар Хайям, умели решать некоторые кубические уравнения с помощью геометрических методов, используя конические сечения. Арабские астрономы ввели в тригонометрию понятие тангенса и котангенса. Насирэддин Туси (1201–1274) в Трактате о полном четырехугольнике систематически изложил плоскую и сферическую геометрии и первым рассмотрел тригонометрию отдельно от астрономии.

    И все же самым важным вкладом арабов в математику стали их переводы и комментарии к великим творениям греков. Европа познакомилась с этими работами после завоевания арабами Северной Африки и Испании, а позднее труды греков были переведены на латынь.

    СРЕДНИЕ ВЕКА И ВОЗРОЖДЕНИЕ

    Средневековая Европа. Римская цивилизация не оставила заметного следа в математике, поскольку была слишком озабочена решением практических проблем. Цивилизация, сложившаяся в Европе раннего Средневековья (ок. 400–1100), не была продуктивной по прямо противоположной причине: интеллектуальная жизнь сосредоточилась почти исключительно на теологии и загробной жизни. Уровень математического знания не поднимался выше арифметики и простых разделов из Начал Евклида. Наиболее важным разделом математики в Средние века считалась астрология; астрологов называли математиками. А поскольку медицинская практика основывалась преимущественно на астрологических показаниях или противопоказаниях, медикам не оставалось ничего другого, как стать математиками.

    Около 1100 в западноевропейской математике начался почти трехвековой период освоения сохраненного арабами и византийскими греками наследия Древнего мира и Востока. Поскольку арабы владели почти всеми трудами древних греков, Европа получила обширную математическую литературу. Перевод этих трудов на латынь способствовал подъему математических исследований. Все великие ученые того времени признавали, что черпали вдохновение в трудах греков.

    Первым заслуживающим упоминания европейским математиком стал Леонардо Пизанский (Фибоначчи). В своем сочинении Книга абака (1202) он познакомил европейцев с индо-арабскими цифрами и методами вычислений, а также с арабской алгеброй. В течение следующих нескольких веков математическая активность в Европе ослабла. Свод математических знаний той эпохи, составленный Лукой Пачоли в 1494, не содержал каких-либо алгебраических новшеств, которых не было у Леонардо.

    Возрождение. Среди лучших геометров эпохи Возрождения были художники, развившие идею перспективы, которая требовала геометрии со сходящимися параллельными прямыми. Художник Леон Баттиста Альберти (1404–1472) ввел понятия проекции и сечения. Прямолинейные лучи света от глаза наблюдателя к различным точкам изображаемой сцены образуют проекцию; сечение получается при прохождении плоскости через проекцию. Чтобы нарисованная картина выглядела реалистической, она должна была быть таким сечением. Понятия проекции и сечения порождали чисто математические вопросы. Например, какими общими геометрическими свойствами обладают сечение и исходная сцена, каковы свойства двух различных сечений одной и той же проекции, образованных двумя различными плоскостями, пересекающими проекцию под различными углами? Из таких вопросов и возникла проективная геометрия. Ее основатель – Ж.Дезарг (1593–1662) с помощью доказательств, основанных на проекции и сечении, унифицировал подход к различным типам конических сечений, которые великий греческий геометр Аполлоний рассматривал отдельно.

    НАЧАЛО СОВРЕМЕННОЙ МАТЕМАТИКИ

    Наступление 16 в. в Западной Европе ознаменовалось важными достижениями в алгебре и арифметике. Были введены в обращение десятичные дроби и правила арифметических действий с ними. Настоящим триумфом стало изобретение в 1614 логарифмов Дж.Непером. К концу 17 в. окончательно сложилось понимание логарифмов как показателей степени с любым положительным числом, отличным от единицы, в качестве основания. С начала 16 в. более широко стали употребляться иррациональные числа. Б.Паскаль (1623–1662) и И.Барроу (1630–1677), учитель И.Ньютона в Кембриджском университете, утверждали, что такое число, как , можно трактовать лишь как геометрическую величину. Однако в те же годы Р.Декарт (1596–1650) и Дж.Валлис (1616–1703) считали, что иррациональные числа допустимы и сами по себе, без ссылок на геометрию. В 16 в. продолжались споры по поводу законности введения отрицательных чисел. Еще менее приемлемыми считались возникавшие при решении квадратных уравнений комплексные числа, такие как , названные Декартом «мнимыми». Эти числа были под подозрением даже в 18 в., хотя Л.Эйлер (1707–1783) с успехом пользовался ими. Комплексные числа окончательно признали только в начале 19 в., когда математики освоились с их геометрическим представлением. 4

    СОВРЕМЕННАЯ МАТЕМАТИКА
    Создание дифференциального и интегрального исчислений ознаменовало начало «высшей математики». Методы математического анализа, в отличие от понятия предела, лежащего в его основе, выглядели ясными и понятными. Многие годы математики, в том числе Ньютон и Лейбниц, тщетно пытались дать точное определение понятию предела. И все же, несмотря на многочисленные сомнения в обоснованности математического анализа, он находил все более широкое применение. Дифференциальное и интегральное исчисления стали краеугольными камнями математического анализа, который со временем включил в себя и такие предметы, как теория дифференциальных уравнений, обыкновенных и с частными производными, бесконечные ряды, вариационное исчисление, дифференциальная геометрия и многое другое. Строгое определение предела удалось получить лишь в 19 в.

    Неевклидова геометрия. К 1800 математика покоилась на двух «китах» – на числовой системе и евклидовой геометрии. Так как многие свойства числовой системы доказывались геометрически, евклидова геометрия была наиболее надежной частью здания математики. Тем не менее аксиома о параллельных содержала утверждение о прямых, простирающихся в бесконечность, которое не могло быть подтверждено опытом. Даже версия этой аксиомы, принадлежащая самому Евклиду, вовсе не утверждает, что какие-то прямые не пересекутся. В ней скорее формулируется условие, при котором они пересекутся в некоторой конечной точке. Столетиями математики пытались найти аксиоме о параллельных соответствующую подходящую замену. Но в каждом варианте непременно оказывался какой-нибудь пробел. Честь создания неевклидовой геометрии выпала Н.И.Лобачевскому (1792–1856) и Я.Бойяи (1802–1860), каждый из которых независимо опубликовал свое собственное оригинальное изложение неевклидовой геометрии. В их геометриях через данную точку можно было провести бесконечно много параллельных прямых. В геометрии Б.Римана (1826–1866) через точку вне прямой нельзя провести ни одной параллельной.

    О физических приложениях неевклидовой геометрии никто серьезно не помышлял. Создание А.Эйнштейном (1879–1955) общей теории относительности в 1915 пробудило научный мир к осознанию реальности неевклидовой геометрии.

    Неевклидова геометрия стала наиболее впечатляющим интеллектуальным свершением 19 в. Она ясно продемонстрировала, что математику нельзя более рассматривать как свод непререкаемых истин. В лучшем случае математика может гарантировать достоверность доказательства на основе недостоверных аксиом. Но зато математики впредь обрели свободу исследовать любые идеи, которые могли показаться им привлекательными. Каждый математик в отдельности был теперь волен вводить свои собственные новые понятия и устанавливать аксиомы по своему усмотрению, следя лишь за тем, чтобы проистекающие из аксиом теоремы не противоречили друг другу. Грандиозное расширение круга математических исследований в конце прошлого века по существу явилось следствием этой новой свободы.

    Математическая строгость. Примерно до 1870 математики пребывали в убеждении, что действуют по предначертаниям древних греков, применяя дедуктивные рассуждения к математическим аксиомам, тем самым обеспечивая своими заключениями не меньшую надежность, чем та, которой обладали аксиомы. Неевклидова геометрия и кватернионы (алгебра, в которой не выполняется свойство коммутативности) заставили математиков осознать, что то, что они принимали за абстрактные и логически непротиворечивые утверждения, в действительности зиждется на эмпирическом и прагматическом базисе.

    Создание неевклидовой геометрии сопровождалось также осознанием существования в евклидовой геометрии логических пробелов. Одним из недостатков евклидовых Начал было использование допущений, не сформулированных в явном виде. По-видимому, Евклид не подвергал сомнению те свойства, которыми обладали его геометрические фигуры, но эти свойства не были включены в его аксиомы. Кроме того, доказывая подобие двух треугольников, Евклид воспользовался наложением одного треугольника на другой, неявно предполагая, что при движении свойства фигур не изменяются. Но кроме таких логических пробелов, в Началах оказалось и несколько ошибочных доказательств.

    Создание новых алгебр, начавшееся с квартернионов, породило аналогичные сомнения и в отношении логической обоснованности арифметики и алгебры обычной числовой системы. Все ранее известные математикам числа обладали свойством коммутативности, т.е. ab = ba. Кватернионы, совершившие переворот в традиционных представлениях о числах, были открыты в 1843 У.Гамильтоном (1805–1865). Они оказались полезными для решения целого ряда физических и геометрических проблем, хотя для кватернионов не выполнялось свойство коммутативности. Квартернионы вынудили математиков осознать, что если не считать посвященной целым числам и далекой от совершенства части евклидовых Начал, арифметика и алгебра не имеют собственной аксиоматической основы. Математики свободно обращались с отрицательными и комплексными числами и производили алгебраические операции, руководствуясь лишь тем, что они успешно работают. Логическая строгость уступила место демонстрации практической пользы введения сомнительных понятий и процедур.

    Почти с самого зарождения математического анализа неоднократно предпринимались попытки подвести под него строгие основания. Математический анализ ввел два новых сложных понятия – производная и определенный интеграл. Над этими понятиями бились Ньютон и Лейбниц, а также математики последующих поколений, превратившие дифференциальное и интегральное исчисления в математический анализ. Однако, несмотря на все усилия, в понятиях предела, непрерывности и дифференцируемости оставалось много неясного. Кроме того, выяснилось, что свойства алгебраических функций нельзя перенести на все другие функции. Почти все математики 18 в. и начала 19 в. предпринимали усилия, чтобы найти строгую основу для математического анализа, и все они потерпели неудачу. Наконец, в 1821, О.Коши (1789–1857), используя понятие числа, подвел строгую базу под весь математический анализ. Однако позднее математики обнаружили у Коши логические пробелы. Желаемая строгость была наконец достигнута в 1859 К.Вейерштрассом (1815–1897).

    Вейерштрасс вначале считал свойства действительных и комплексных чисел самоочевидными. Позднее он, как и Г.Кантор (1845–1918) и Р.Дедекинд (1831–1916), осознал необходимость построения теории иррациональных чисел. Они дали корректное определение иррациональных чисел и установили их свойства, однако свойства рациональных чисел по-прежнему считали самоочевидными. Наконец, логическая структура теории действительных и комплексных чисел приобрела свой законченный вид в работах Дедекинда и Дж.Пеано (1858–1932). Создание оснований числовой системы позволило также решить проблемы обоснования алгебры.

    Задача усиления строгости формулировок евклидовой геометрии была сравнительно простой и сводилась к перечислению определяемых терминов, уточнению определений, введению недостающих аксиом и восполнению пробелов в доказательствах. Эту задачу выполнил в 1899 Д.Гильберт (1862–1943). Почти в то же время были заложены и основы других геометрий. Гильберт сформулировал концепцию формальной аксиоматики. Одна из особенностей предложенного им подхода – трактовка неопределяемых терминов: под ними можно подразумевать любые объекты, удовлетворяющие аксиомам. Следствием этой особенности явилась возрастающая абстрактность современной математики. Евклидова и неевклидова геометрии описывают физическое пространство. Но в топологии, являющейся обобщением геометрии, неопределяемый термин «точка» может быть свободен от геометрических ассоциаций. Для тополога точкой может быть функция или последовательность чисел, равно как и что-нибудь другое. Абстрактное пространство представляет собой множество таких «точек»5

    Заключение

    Таким образом, в заключении проведенного исследования можно сделать следующие выводы:

    Если математику, известную до 1600, можно охарактеризовать как элементарную, то по сравнению с тем, что было создано позднее, эта элементарная математика бесконечно мала. 6

    Расширились старые области и появились новые, как чистые, так и прикладные отрасли математических знаний. Выходят около 500 математических журналов. Огромное количество публикуемых результатов не позволяет даже специалисту ознакомиться со всем, что происходит в той области, в которой он работает, не говоря уже о том, что многие результаты доступны пониманию только специалиста узкого профиля.

    Ни один математик сегодня не может надеяться знать больше того, что происходит в очень маленьком уголке науки.

    Список литературы

    1. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2013.

    2. Юшкевич А.П. История математики в средние века. М., 1961
      Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 2014.

    3. Клейн Ф. Лекции о развитии математики в XIX столетии. М., 2015.




    1 Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2013.


    2 Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2013.

    3 Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2013.

    4 Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2013.

    5 Юшкевич А.П. История математики в средние века. М., 1961
    Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 2014.


    6 Юшкевич А.П. История математики в средние века. М., 1961
    Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 2014.




    написать администратору сайта