Содержание Введение Главные факторы стимуляции изобретений на ал. Содержание Введение Главные факторы стимуляции изобретений на альтернативных источниках питания. Проблемы в России перехода транспорта на другие виды топлива
Скачать 27.43 Kb.
|
Содержание Введение Главные факторы стимуляции изобретений на альтернативных источниках питания. Проблемы в России перехода транспорта на другие виды топлива. Заключение Список литературы Введение При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси. В двигателях с принудительным воспламенением концентрация окиси углерода достигает больших значений из-за недостатка кислорода для полного окисления топлива при их работе на богатой топливом смеси. При движении автомобилей в городе и на дорогах с переменным уклоном и часто меняющимися скоростями с включенной передачей и открытой дроссельной заслонкой двигателям приходится около 1/3 путевого времени работать в режиме принудительного холостого хода. На принудительном холостом ходу двигатель не отдает а, напротив, поглощает энергию, накопленную автомобилем. При этом нерационально расходуется топливо, усиленное всасывание которого приводит к наибольшему выбросу токсичных газов СО и СН в атмосферу В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива - углекислого газа и паров воды. Однако в относительно небольшом количестве в них содержатся вещества, обладающие токсическим и канцерогенным действием. Это окись углерода, углеводороды различного химического состава, окислы азота, образующиеся в основном при высоких температуре и давлении. Автомобильные выхлопные газы - смесь примерно 200 веществ. В них содержатся углеводороды-не сгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т.е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме. К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7% оксида углерода. При снижении скорости эта доля увеличивается до 3,9%, а на малом ходу-до 6,9%. Главные факторы стимуляции изобретений на альтернативных источниках питания Основными эксплуатационными факторами, влияющими на уровень вредных выбросов двигателей, являются факторы, характеризующие состояние деталей цилиндропоршневой группы (ЦПГ). Повышенный износ деталей ЦПГ и отклонения от их правильной геометрической формы являются причиной увеличения концентрации токсичных компонентов в отработавших газах (ОГ) и картерных газах (КГ). Базовой деталью ЦПГ, от которой зависит работоспособность и экологичность двигателя, является цилиндр, т. к. герметичность камеры сгорания зависит от уплотняющей способности кольца в сопряжении с цилиндром. От технического состояния цилиндров и поршневых колец главным образом зависит интенсивность роста зазоров между кольцами и канавками поршней. Таким образом, контроль и регулировка зазора между кольцом и цилиндром в процессе эксплуатации являются существенным резервом снижения количества вредных примесей в ОГ и КГ посредством улучшения условий сгорания топлива и снижения количества масла, оставшегося в надпоршневом пространстве. Токсичными выбросами ДВС являются отработавшие и картерные газы. С ними поступает в атмосферу около 40% токсичных примесей от общего выброса. Содержание углеводородов в отработавших газах зависит от технического состояния и регулировок двигателя и на холостом ходу колеблется от 100 до 5000% и более. При общем небольшом количестве картерных газов равном 2-10% отработавших газов в общем загрязнении атмосферы, доля картерных газов составляет около 10% у мало изношенных двигателей и вырастает до 40% при эксплуатации двигателя с изношенной цилиндропоршневой группой, т.к. концентрация углеводородов в картерных газах в 15-10 раз выше, чем в отработавших двигателя. Количество КГ, а так же их химический состав зависят от состояния деталей ЦПГ, осуществляющих уплотнение камеры сгорания. От величины зазоров между трущимися деталями ЦПГ зависит проникновение газов из цилиндра в картер и обратно. При этом увеличивается доля углеводородов с канцерогенными свойствами из-за повышенного угара масла и увеличенного расхода картерных газов через замкнутую систему вентиляции картера. К достижению предельного износа двигателя выбросы увеличиваются в среднем на 50%. На примере ускоренных испытаний, проведенных в НАМИ, установлено что износ двигателя увеличивает выбросы ОГ углеводородов в 10 раз. Основная масса двигателей с повышенной дымностью ОГ приходится на двигатели, прошедшие капитальный ремонт. Степень разуплотнения камеры сгорания зависит от износа деталей ЦПГ, отклонения их макрогеометри от правильной геометрической формы. При увеличении неплотностей камеры сгорания происходит возрастание СО и СН и снижение СО2 в результате ухудшения условий сгорания топлива. Кроме снижения качества организации рабочего процесса, зазоры между кольцом и цилиндром, а также зазоры между кольцом и канавкой поршня приводят к увеличению количества масла, попавшего в надпоршневое пространство, к увеличению отклонения от заданной динамики тепловыделения в процессе сгорания, а, следовательно, - к увеличению общей массы токсических выбросов. Масло составляет 30-40% твёрдых частиц ОГ. Базовой деталью ЦПГ является цилиндр, от которого зависит экономическая и экологическая целесообразность эксплуатации двигателя. Износ гильз цилиндров имеет выраженную форму овала, большая ось которого расположена в плоскости качания шатуна. Причиной образования овальности цилиндров главным образом является увеличенная нагрузка поршней на гильзы именно в плоскости качания шатунов. На овальность цилиндров влияет также несовершенство технологии сборки блока цилиндров. Изменение макрогеометрии цилиндров (овальности и конусности) после сборки двигателя также приводит к ухудшению прилегания поршневых колец к зеркалу цилиндра. Известно, что при установке гильз в блоки различных марок ДВС, овальность в цилиндрах увеличивается в 2-3 раза. Очень важно отметить, что характер искажения макрогеометрии гильз цилиндров после сборки и в процессе эксплуатации одинаков для большинства конструкций блоков цилиндров с мокрыми гильзами. Большая ось овала цилиндра, образующегося при сборке, в зоне остановки верхнего компрессионного кольца в верхней мёртвой точке поршня имеет такую же направленность, как и большая ось овала, образующегося при эксплуатации. Такой характер деформации цилиндров объясняется большей деформацией блока в местах между расточками под гильзы. Снижение овальности цилиндров способствует снижению интенсивности износа колец и канавок поршней, что в целом способствует улучшению работы поршневых колец и улучшению уплотнения камеры сгорания. Известно, что замена маслосъёмных колец после выработки предельного ресурса в некоторой степени восстанавливает средний уровень токсичности двигателя. Бесспорно, если при замене колец произвести регулировку овальности цилиндров до уровня предельной величины на изготовление новых гильз, то эффект будет намного значительнее. Анализ отечественной и зарубежной литературы показал, что развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии). Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив. Крайне ограниченные сведения в литературе об особенностях горения углеводородного топлива с добавками водорода и аммиака в дизелях не позволяют однозначно ответить на вопрос о влиянии водородсодержащих топлив на показатели рабочего процесса дизеля. Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки. Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях. Исследование влияния различных типов альтернативных топлив проводилось для нескольких типов быстроходных дизелей с различными способами смесеобразования, поэтому было необходимо получить как можно более полную информацию о протекании процессов топливоподачи, сгорания, сажеобразования, токсичности и т.д. Поэтому была разработана и внедрена автоматизированная система регистрации и обработки информации на базе ПК. Для этого комплекса был разработан пакет прикладных программ, включающий программу сбора информации с различных датчиков во время испытаний, программы обработки полученных данных по анализу индикаторной диаграммы, результатов оптического индицирования, топливоподачи и обсчета параметров режима. Для одновременной подачи цикловой порции дизельного топлива и газа в цилиндр автором разработана специальная двухтопливная форсунка, которая дополнялась отдельной магистралью, состоящей из штуцера подвода газа и каналов в корпусе форсунки и распылителя. В канале корпуса форсунки выполнен обратный клапан, прижимаемый к седлу пружиной. В канал распылителя запрессована цилиндрическая вставка с винтовой нарезкой на поверхности, которая образует смесительно-аккумулирующую камеру, соединяющуюся с подъигольной полостью распылителя форсунки. На базе разработанной форсунки была изготовлена топливная система дизеля, позволяющая подавать различные виды газообразных добавок к топливу. Наиболее эффективно проводить рассмотрение особенностей рабочего процесса при использовании альтернативных топлив, обладая информацией о пространственном распределении полей концентрации сажи и температуры. На сегодняшний день существует в основном двухмерное представление температурно-концентрационной неоднородности в цилиндре дизеля. В результате была поставлена задача экспериментального исследования пространственного распределения полей температуры и концентраций сажи. В работе использовалось оригинальное экспериментальное оборудование для определения массовой концентрации сажи, основанное на оптическом индицировании цилиндров, и программно реализованные методики определения температурных полей. Расчетные исследования растворимости газа (водорода, аммиака и др.) основывались на следующих предположениях: во-первых -процесс растворения идет в смесительно-аккумулирующей камере и распылителе форсунки; во-вторых - растворение протекает в соответствии с моделью обновления поверхности, т.е. поверхность контакта топлива с газом обновляется с частотой, равной частоте колебания давления топлива в нагнетательном трубопроводе высокого давления. Одним из путей преодоления трудностей приготовления смесей дизельного топлива с альтернативными является применение третьего компонента - совместного растворителя дизельного топлива и спирта. Совместный растворитель должен иметь свойства дизельного топлива и спирта, т.е. его молекула должна иметь как полярные свойства, так и алифатическую составляющую для образования связей с углеводородами. Рассчитать полные термодинамические характеристики полученного тройного раствора можно с помощью теорий UNIFAC или UNIQUAC, использующих метод решеток. Попытки использования водорода в качестве топлива для двигателей внутреннего сгорания известны достаточно давно. Так, например, в двадцатые годы исследовали вариант использования водорода как добавки к основному топливу для двигателей внутреннего сгорания дирижаблей, что давало возможность увеличить дальность их полета. Использование водорода в качестве топлива для ДВС представляет собой комплексную проблему, которая включает обширный круг вопросов: возможность перевода на водород современных двигателей; изучение рабочего процесса двигателей при работе на водороде; определение оптимальных способов регулирования рабочего процесса обеспечивающих минимальную токсичность и максимальную топливную экономичность; разработку системы топливоподачи обеспечивающую организацию эффективного рабочего процесса в цилиндрах ДВС; разработку эффективных способов хранения водорода на борту транспорта; обеспечение экологической эффективности применения водорода для ДВС; обеспечение возможности заправки и аккумулирования водорода для двигателей. Исследования в этой области отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования, при использовании водорода в качестве присадки, частично замещая топливо водородом, и работе двигателя только на водороде. Обширный перечень исследований определяет необходимость их систематизации и критического анализа. Использование водорода известно в двигателях, работающих на традиционных топливах нефтяного происхождения, а также в сочетании с альтернативными топливами. Так, например, со спиртами (этиловый, метиловый) или с природным газом. Возможно использование водорода в сочетании с синтетическими топливами, мазутами и другими топливами. Исследования этой области известны как для бензиновых двигателей, так и для дизелей, а также для других типов двигателей. Некоторые авторы работ этой тематики считают, что водород является неизбежностью и необходимо лучше подготовиться к встрече с этой неизбежностью. Отличительной особенностью водорода является его высокие энергетические показатели, уникальные кинетические характеристики, экологическая чистота и практически неограниченная сырьевая база. По массовой энергоемкости водород превосходит традиционные углеводородные топлива в 2,5-3 раза, спирты - в 5-6 раз, аммиак - в 7 раз. Качественное влияние на рабочий процесс ДВС водорода определяется, прежде всего, его свойствами. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса ДВС, лучшие показатели экономичности и токсичности. Чтобы приспособить существующие конструкции поршневых ДВС, бензиновых и дизелей к работе на водороде, как основном топливе, необходимы определенные изменения, в первую очередь - конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит и снижению мощности до 40%, из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования картина меняется, энергоемкость заряда водородного дизеля может возрастать до 12%, или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени. Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска «холодного» водорода исследованы и дают положительные результаты. Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время, низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород. Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023К. Возможно, воспламенение воздушной смеси от запальной порции углеводородного топлива, за счет увеличения температуры конца сжатия применением наддува или подогревом на впуске воздушного заряда. Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а повышение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмисси окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при а>1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8… 10 раз. Проблемы в России перехода транспорта на другие виды топлива Проблемы экологической безопасности автомобильного транспорта являются составной частью экологической безопасности страны. Значимость и острота этой проблемы растут с каждым годом. В инфраструктуре транспортной отрасли России насчитывается около 4 тыс. крупных и средних автотранспортных предприятий, занятых пассажирскими и грузовыми перевозками. С развитием рыночных отношений появились в большом количестве коммерческие транспортные подразделения небольшой мощности. В 2010 году в РФ функционировало свыше 400 тыс. субъектов транспортного рынка различных форм собственности. Рост автопарка, изменение форм собственности и видов деятельности существенно не повлияли на характер воздействия автотранспорта на окружающую природную среду. Вызывает тревогу тот факт, что, несмотря на проводимые работы, выбросы загрязняющих веществ в атмосферу от автотранспортных средств увеличиваются в год в среднем на 3,1%. В результате величина ежегодного экологического ущерба от функционирования транспортного комплекса России составляет более 3,5 млрд. долл. США и продолжает расти. Автомобильный парк России еще в 2010 году составлял 27,06 млн. шт., в том числе 20,12 млн. легковых автомобилей, 4,57 млн. грузовиков, 650 тыс. автобусов и 1,72 млн. прицепов и полуприцепов. Средний возраст автотранспортных средств остается значительным и составляет 10 лет, в том числе 10% парка эксплуатируется свыше 13 лет, полностью изношены и подлежат списанию. Один автомобиль ежегодно поглощает из атмосферы в среднем более 4 тонн кислорода, выбрасывая при этом с отработанными газами примерно 800 кг угарного газа, 40 кг оксидов азота и почти 200 кг различных углеродов. В результате по России от автотранспорта за год в атмосферу поступает огромное количество только канцерогенных веществ: 27 тыс. тонн бензола, 17,5 тыс. тонн формальдегида, 1,5 тонны бензопирена и 5 тыс. тонн свинца. В целом, общее количество вредных веществ, ежегодно выбрасываемых автомобилями, превышает цифру в 20 млн. тонн. Необходимо отметить, что, с точки зрения наносимого экологического ущерба, автотранспорт лидирует во всех видах негативного воздействия: загрязнение воздуха - 95%, шум - 49,5%, воздействие на климат - 68%. Экологические проблемы, связанные с использованием традиционного моторного топлива в двигателях транспортных средств, актуальны не только для России, но и для всех стран мира. Во многих странах мира приняты жесткие требования по экологизации автотранспорта. В результате с 1993 года по 1999 год количество вредных веществ в отработанных газах автомобилей за рубежом снизилось примерно в 2 раза, а всего за последние 40 лет содержание токсичных компонентов уменьшилось на 70%. В настоящее время многие зарубежные моторостроительные фирмы взяли курс на решение задачи достижения нулевой (Zero) токсичности отработанных газов. Их многолетний опыт показывает, что добиться этого можно только в случае использования альтернативных (не нефтяных) видов моторного топлива. Именно поэтому практически все перспективные экологически чистые автомобили проектируются под альтернативные виды топлива. Можно привести несколько примеров. Так, фирмой Opel разработан новый легковой автомобиль Opel Zafira, работающий на природном газе. Автомобиль развивает мощность 74 кВт (101 л.с.) и максимальный крутящий момент 150 Н*м. Как показали испытания, данный автомобиль не только не наносит ущерба окружающей среде, но также является значительно экономичнее бензинового. В марте 2001 года на автосалоне в Женеве представлен автомобиль Advantage One швейцарской фирмы Rinspeed. Это спортивный болид, который в качестве моторного топлива использует биогаз. 4-цилиндровый двигатель рабочим объемом 1,8 литров развивает мощность 120 л.с., что позволяет ему достигнуть максимальной скорости свыше 200 км/ч и разгоняться с места до 100 км/ч за 6 секунд. В Европе началась продажа автомобилей Volvo, работающих на газе. Первыми в продажу поступили модели S80 и V70, работающие на природном газе, а также седаны и универсалы серии 40, адаптированные на пропан. На одной заправке газом можно проехать до 300 км, если автомобиль работает на метане, или 450 км, если машина использует пропан. Экологические параметры этих машин превосходят требования самого жесткого европейского стандарта - R 83-04 ЕЭК ООН ("Евро-3). Безусловно, значительные материальные затраты на создание экологически чистых машин связаны не с благородством и альтруизмом западных моторостроительных компаний, а определяются давлением государственных законов. Косвенно эти законы коснулись и России - к нам хлынул поток зарубежных автомобилей, которые в развитых странах были признаны экологически не безопасными, тем самым пополнив отечественный автопарк автомобилей, наносящих колоссальный ущерб экологии наших городов. Справедливости ради необходимо признать, что производимые в России сейчас автомобили отстают на 8-10 лет по всем показателям от автомобилей, выпускаемых в настоящее время в промышленно развитых странах. Роль государства в вопросах экологизации автотранспорта особенно красноречиво видна на примере США. За последние годы в США принят ряд законодательных актов, в которых самое пристальное внимание уделяется проблеме улучшения экологической обстановки в городах и населенных пунктах. В их числе: закон "Об альтернативном моторном топливе" (1988, Рейган), закон "О чистом воздухе" (1990, Буш), закон "Об энергетической политике" (1991, Буш). На основе закона "Об энергетической политике" (ЕРАСТ) Министерство энергетики США значительно расширило научно-исследовательские работы в секторе потребления энергоресурсов в автотранспорте и разрабатывает новые программы по ускоренному широкомасштабному использованию альтернативных видов топлив. Правительство РФ также принимает определенные меры по решению проблем экологизации автотранспорта. Так, постановлениями правительства РФ от 15 января 1993 года № 31 "О неотложных мерах по расширению замещения моторных топлив природным газом" и от 2 ноября 1995 года № 1087 "О неотложных мерах по энергосбережению", в частности, предусмотрено осуществить замену дефицитных нефтяных видов топлива альтернативными, а также сократить объем потребления бензина за счет увеличения выпуска автотранспортных средств, работающих на газообразном топливе. Приоритетность природного газа, как наиболее перспективного экологически чистого моторного топлива, очевидна для многих стран мира. В США, Канаде, Новой Зеландии, Аргентине, Италии, Голландии, Франции и других странах успешно действуют национальные программы перевода автотранспорта, в первую очередь городского, на газомоторное топливо. Следует подчеркнуть, что подобную политику проводят не только импортеры нефти, но и государства, имеющие значительные собственные нефтяные месторождения. В связи с этим перевод автомобильного транспорта на природный газ становится важнейшей государственной задачей для России. Однако в последнее время вопросы экологизации и широкого использования природного газа в качестве моторного топлива явно стали буксовать на федеральном уровне. С 1999 года по коридорам власти гуляет проект закона "Об использовании природного газа в качестве моторного топлива", неясна судьба и другого, не менее важного для России, закона "Об обеспечении экологической безопасности автотранспорта", разработанного Комитетом Государственной Думы по экологии. Хотелось бы надеяться, что приоритеты здоровья нации будут выше, чем чьи-то ведомственные интересы. Именно местные власти могут широко использовать предоставленные им законодательством налоговые и тарифные стимулы для расширения использования газомоторного топлива на транспорте. Положительные примеры такого подхода в Российской Федерации уже имеются. В Республике Татарстан, Алтайском крае, Белгородской, Брянской, Воронежской, Оренбургской, Самарской и ряде других областей утверждены региональные программы для реализации этих вопросов. Завершается подготовка программ в Вологодской, Костромской, Ленинградской, Саратовской и Тамбовской областях. В Кабардино-Балкарской Республике, Владимирской, Липецкой, Пензенской областях задачи по газификации автотранспортных средств определены правительственными постановлениями. Томской областной думой принят закон "Об использовании природного газа в качестве моторного топлива".На территории нашей страны мало что делается для экологизации городского транспорта. Как это ни прискорбно,. С учетом роста численности автомобильного парка в городах наблюдается увеличение выбросов вредных веществ дорожным транспортом, которые в настоящее время составляют более 77% всех источников загрязнения. Количество машин за последние годы выросло в 4 раза, и теперь при населении около 5 млн. человек в среднем городе было зарегистрировано около 1 млн. легковых автомашин. Прибавьте к этому грузовой и транзитный транспорт, который едет через весь город, и станет ясно, почему уровень концентрации оксидов азота, углерода и других вредных веществ на оживленных магистралях города в 15-20 раз превышает ПДК. А это не просто цифры, если учесть, что человек за сутки вдыхает до 20 кубометров воздуха и что многие яды, поступающие в организм ингаляционным путем, действуют в сотни раз сильнее, то нечего удивляться тому букету хронических и опасных для жизни заболеваний, которыми страдает городское население . Складывающаяся ситуация с нефтяным моторным топливом и назревающий экологический кризис в в городах е показывают, что наступило время для создания комплексной региональной программы по экологизации и газификации городского автотранспорта. Кроме чисто организационных и технических мероприятий, особое внимание при разработке региональной программы необходимо уделить вопросам соответствующей нормативно-законодательной базы, и прежде всего налоговой. Во многих странах мира для стимулирования газификации автотранспорта предусматривается существенное уменьшение налогов на автомобили, использующие газовое топливо. В Западной Европе эта разница составляет 1,5-2 раза, кроме того, автовладельцы после конверсии автомобиля освобождаются от налоговых выплат на 3 года. С 1996 года в Великобритании и Франции существенно уменьшены налоги на автомобили, использующие газовое топливо. В Германии эта разница составляет 1,5 раза, в Нидерландах - 1,7 раза. Газификация автотранспорта - это не только решение экологических проблем, но и экономия бюджетных средств (моторное топливо из природного газа стоит наполовину дешевле нефтяного). Ни для кого не секрет, что именно с этой целью весь свой президентский срок Билл Клинтон ездил на автомобиле, работавшем на природном газе. А Америка - это отнюдь не самая бедная и экологически неблагополучная страна. В то же время на приобретение традиционного топлива для муниципального транспорта из городской казны в городах расходуется более 10 миллионов долларов, а затем на порядок больше в здравоохранение, озеленение и уборку улиц, реставрацию и ремонт памятников архитектуры, ликвидируя вредные последствия его применения. экологический безопасность автомобильный транспорт Заключение На сегодняшний день в нашей стране основная проблема внедрения других источников питания: .низкий уровень подготовки специалистов в данных направлениях научной деятельности , .высокий уровень коррупции руководителей различных отраслей автомобильной промышленности, .дороговизна и нерентабельность строительства и запуска заводов по получению альтернативных источников питания , .трудность размещение на территории страны заправочных станций .затруднение увеличения километража прохождения автомобилем от « заправки до заправки» Список литературы 1.Добринский, Е. С. Проблемы энергосбережения и экологии автомобильной техники: по итогам 5-го Международного автомобильного научного форума (МАНФ-2007 ) / Е. С. Добринский, В. А. Сеин //Машиностроитель. - 2008. - № 1. - С.2-6. .Грушников, В. А. Экологические аспекты развития и инициативы автомобилестроения / В. А. Грушников // Автотранспортное предприятие. - 2011. - № 12. - С.27-30. .Грушников, В. А. Экологические и экономические проблемы автотранспорта / В. А. Грушников // Автотранспорт: эксплуатация, обслуживание, ремонт. - 2010. - № 9. - С.33-37. .Долголаптев, А. В. Экологически чистый транспорт - реальность завтрашнего дня / А.В. Долголаптев // Экологический вестник России. - 2008. - № 3. - С.15-18. .Донченко, В. В. Нормативное обеспечение оценки технического состояния эксплуатируемых автотранспортных средств по параметрам экологической безопасности / В. В. Донченко, Ю. И. Кунин //Автотранспортное предприятие. - 2008. - № 1. - С.15-20. |