Закон Гука. Содержание Введение Роберт Гук Биография Открытия Изобретения Сила упругости. Закон Гука Заключение Список литературы Введение
Скачать 52.71 Kb.
|
Содержание Введение…………………………………………………………………...………3 1. Роберт Гук………………………………………………………………………4 1.1 Биография………………………………………………………...……………4 1.2 Открытия………………………………………………………………………5 1.3 Изобретения…………………………………………………...………………8 2. Сила упругости. Закон Гука……………………………….…………………10 Заключение…………………………………………………….…………………14 Список литературы………………………………………………………………15 Введение Роберт Гук (англ. Robert Hooke; Роберт Хук, 18 (28) июля 1635, остров Уайт, Англия — 3 марта 1703, в Лондоне) — английский естествоиспытатель и изобретатель. Член Лондонского королевского общества (1663). Гука смело можно назвать одним из отцов физики, в особенности экспериментальной, но и во многих других науках ему принадлежат зачастую одни из первых основополагающих работ и множество открытий. Как выглядел Роберт Гук, неизвестно. Длительное время считалось, что на портрете, опубликованном 3 июля 1939 года в журнале «Тайм», изображён Гук, а Лиза Джардин даже поместила его на обложку своей книги о Гуке. Однако позже исследователи пришли к заключению, что на портрете изображён фламандский химик и физиолог Ян Баптиста ван Гельмонт. 1. Роберт Гук 1.1 Биография Отец Гука подготавливал его первоначально к духовной деятельности, но ввиду слабого здоровья Роберта и проявляемой им способности к занятию механикой предназначил его к изучению часового мастерства. Впоследствии, однако, молодой Гук проявил интерес к научным занятиям и вследствие этого был отправлен в Вестминстерскую школу, где успешно изучал языки латинский, древнегреческий, иврит, но в особенности интересовался математикой и выказал большую способность к изобретениям по физике и химии. Способность его к занятиям физикой и химией была признана и оценена учёными Оксфордского университета, в котором он стал заниматься с 1653 года; он сначала стал помощником химика Виллиса, а потом известного Роберта Бойля. -C 1662 был куратором экспериментов при Лондонском Королевском обществе (с момента его создания). -В 1663 Королевское общество, признав полезность и важность его открытий, сделало его своим членом. -В 1677—1683 был секретарём этого общества. -С 1664 — профессор Лондонского университета (профессор геометрии в Gresham College). -В 1665 публикует «Микрографию», где описаны его микроскопические и телескопические наблюдения, содержащую публикацию существенных открытий в биологии. -С 1667 Гук читает «Кутлеровские (Cutlerian or Cutler) лекции» по механике. В течение своей 68-летней жизни Роберт Гук, несмотря на слабость здоровья, был неутомим в занятиях, сделал много научных открытий, изобретений и усовершенствований. Более 350 лет назад он открыл клетку, женскую яйцеклетку и мужские сперматозоиды. 1.2 Открытия К числу открытий Гука принадлежат: -открытие пропорциональности между упругими растяжениями, сжатиями и изгибами, и производящими их напряжениями (закон Гука), -правильная формулировка закона всемирного тяготения (приоритет Гука оспаривался Ньютоном, но, по-видимому, не в части формулировки — сила тяготения обратно пропорциональна квадрату расстояния; кроме того, Ньютон утверждал о независимом и более раннем открытии этой формулы, которую, однако, до открытия Гуком никому не сообщал), -открытие цветов тонких плёнок (то есть, в конечном итоге, явления интерференции света), -идея о волнообразном распространении света (более или менее одновременно с Гюйгенсом), экспериментальное обоснование её открытой Гуком интерференцией света, волновая теория света, -гипотеза о поперечном характере световых волн, -открытия в акустике, например, демонстрация того, что высота звука определяется частотой колебаний, -теоретическое положение о сущности теплоты как движения частиц тела, -открытие постоянства температуры таяния льда и кипения воды, -закон Бойля (каков здесь вклад Гука, Бойля и его ученика Ричарда Таунли (Richard Townley) — не до конца ясно), -Живая клетка с помощью усовершенствованного им микроскопа. Гуку же принадлежит сам термин «клетка» — англ. cell. и многое другое. Первое из этих открытий, как утверждает он сам в своём сочинении «De potentia restitutiva», опубликованном в 1679, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч. В настоящее время этот закон Гука в обобщённом виде служит основанием математической теории упругости. Что касается до прочих его открытий, то в них он не имеет такого исключительного первенства; так, цвета тонких плёнок в мыльных пузырях Бойль заметил за 9 лет ранее; но Гук, наблюдая цвета тонких пластинок гипса, подметил периодичность цветов в зависимости от толщины: постоянство температуры таяния льда он открыл не ранее членов флорентийской академии, но постоянство температуры кипения воды подмечено им ранее Ренальдини; идея о волнообразном распространении света высказана им позже Гримальди. Идею же об универсальной силе тяготения, следуя Кеплеру, Гук имел с середины 1660-х годов, затем, ещё в недостаточно определённой форме, он выразил её в 1674 в трактате «Попытка доказательства движения Земли», но уже в письме 6 января 1680 года Ньютону Гук впервые ясно формулирует закон всемирного тяготения и предлагает Ньютону, как математически более компетентному исследователю, строго математически обосновать его, показав связь с первым законом Кеплера для некруговых орбит (вполне вероятно, уже имея приближённое решение). С этого письма, насколько сейчас известно, начинается документальная история закона всемирного тяготения. Непосредственными предшественниками Гука называют Кеплера, Борелли и Буллиальда, хотя их взгляды достаточно далеки от ясной правильной формулировки. Ньютону также принадлежат некоторые работы по тяготению, предшествовавшие результатам Гука, однако большинство самых важных результатов, о которых позднее вспоминал Ньютон, во всяком случае не было им никому сообщено. В. И. Арнольд в книге «Гюйгенс и Барроу, Ньютон и Гук» аргументирует, в том числе документально, утверждение, что именно Гуком был открыт закон всемирного тяготения (закон обратных квадратов для центральной гравитационной силы), и даже вполне корректно обоснован им для случая круговых орбит, Ньютон же доделал это обоснование для случая эллиптических орбит (по инициативе Гука: последний сообщил ему свои результаты и попросил заняться этой задачей). Приводимые там цитаты Ньютона, оспаривающего приоритет Гука, говорят лишь о том, что Ньютон придавал своей части доказательства несоизмеримо большую значимость (в силу её трудности и т. д.), но отнюдь не отрицает принадлежность Гуку формулировки закона. Таким образом, приоритет формулировки и первоначального обоснования следует отдать Гуку (если, конечно, не кому-то до него), и он же, судя по всему, ясно сформулировал Ньютону задачу завершения обоснования. Ньютон, впрочем, утверждал, что сделал это же открытие независимо и раньше, но он никому об этом не сообщал, и не осталось никаких документальных свидетельств этого; кроме того, в любом случае, Ньютон забросил работы по этой теме, которые возобновил, по его признанию, под влиянием письма Гука. Ряд современных авторов полагают, что главным вкладом Гука в небесную механику было представление движения Земли в виде суперпозиции движения по инерции (по касательной к траектории) и падения на Солнце как тяготеющий центр, что оказало, в частности, серьёзное влияние на Ньютона. В частности, этот способ рассмотрения давал непосредственную базу для выяснения природы второго закона Кеплера (сохранения момента импульса при центральной силе), что явилось ключом и к полному решению кеплеровой задачи. В упомянутой выше книге Арнольда указывается, что Гуку принадлежит открытие закона, который в современной литературе принято называть законом Бойля, причём утверждается, что сам Бойль не только не оспаривает это, но явно об этом пишет (самому же Бойлю принадлежит лишь первенство публикации). Впрочем, реальный вклад Бойля и его ученика Ричарда Таунли (Richard Townley) в открытие этого закона мог быть и достаточно велик. С помощью усовершенствованного им микроскопа Гук наблюдал структуру растений и дал чёткий рисунок, впервые показавший клеточное строение пробки (термин «клетка» был введён Гуком). В своей работе «Микрография» (Micrographia, 1665) он описал клетки бузины, укропа, моркови, привёл изображения весьма мелких объектов, таких как глаз мухи, комара и его личинки, детально описал клеточное строение пробки, крыла пчелы, плесени, мха. В этой же работе Гук изложил свою теорию цветов, объяснил окраску тонких слоёв отражением света от их верхней и нижней границ. Гук придерживался волновой теории света и оспаривал корпускулярную; теплоту считал результатом механического движения частиц вещества. 1.3 Изобретения Изобретения Гука весьма разнообразны. Во-первых, следует сказать о спиральной пружине для регулирования хода часов; изобретение это было сделано им в течение времени от 1656 до 1658. По указаниям Гука часовой мастер Томпсон сделал для Карла II первые часы с регулирующей пружиной. Нидерландский механик, физик и математик Христиан Гюйгенс применил регулирующую спираль позже Гука, но независимо от него; зацепляющие части (echappement), придуманные ими, неодинаковы. Идею о применении конического маятника к регулированию часов Гук приписывал себе и оспаривал первенство у Гюйгенса. В 1666 он изобрёл спиртовой уровень, в 1665 представил королевскому обществу малый квадрант, в котором алидада перемещалась с помощью микрометренного винта, так что представлялась возможность отсчитывать минуты и секунды; далее, когда найдено было удобным заменить диоптры астрономических инструментов трубами, он предложил помещать в окуляр нитяную сетку. Вообще Гук сделал немало усовершенствований в конструкции телескопов диоптрических и катоптрических; стёкла он шлифовал сам и много занимался наблюдениями; между прочим, он обратил внимание на пятна на поверхности Юпитера и Марса и по движению их определил, одновременно с Джованни Кассини, скорости вращений этих планет вокруг осей. В 1684 изобрёл первую в мире систему оптического телеграфа. Изобрёл множество различных механизмов, в частности для построения различных геометрических кривых (эллипсов, парабол). Предложил прототип тепловых машин. Кроме того, он изобрёл термометр-минима, усовершенствованный барометр, гигрометр, анемометр, регистрирующий дождемер; делал наблюдения с целью определить влияние вращения Земли на падение тел и занимался многими физическими вопросами, например, о влияниях волосности, сцепления, о взвешивании воздуха, об удельном весе льда, изобрёл особый ареометр для определения степени пресности речной воды (water-poise). В 1666 Гук представил Королевскому обществу модель изобретённых им винтовых зубчатых колёс, описанных им впоследствии в «Lectiones Cutlerianae» (1674). Эти винтовые колёса известны теперь под именем Вайтовых колёс. Карданово сочленение, служащее для подвеса ламп и компасных коробок на судах, Гук применил для передачи вращений между двумя валами, пересекающимися под произвольным углом. Установив постоянство температур замерзания и кипения воды, вместе с Гюйгенсом, около 1660 предложил эти точки в качестве реперных для шкалы термометра. Гук был главным помощником Кристофера Рена при восстановлении Лондона после великого пожара 1666. В сотрудничестве с Реном и самостоятельно построил в качестве архитектора множество зданий (например, Гринвичскую обсерваторию, церковь Вилленского прихода в Милтон Кинсе, см. рисунки). В частности, сотрудничал с Реном в строительстве лондонского Собора св. Павла, купол которого построен с использованием метода, придуманного Гуком. Внёс серьёзный вклад в градостроительство, предложив новую схему планировки улиц при восстановлении Лондона. В 1665 году он опубликовал книгу под названием Micrographia, содержащую описание ряда исследований с использованием микроскопа и телескопа, а также оригинальных наблюдений в биологии. 2. Сила упругости. Закон Гука На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья. Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силой, равной силе тяжести, но направленной в противоположную сторону. Что это за сила? На рисунке 1, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34,б). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости. Рисунок 1. Сила упругости Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю. Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры. Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации. Сила упругости возникает и при сжатии. Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27,б). Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем.Закон Гука гласит: Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению. Если удлинение тела, т. е. изменение его длины, обозначить через х, а силу упругости - через Fупр, то закону Гука можно придать следующую математическую форму: Fупр = kx где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы. Единицей жесткости в СИ является ньютон на метр (1 Н/м). Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид ceiiinosssttuv. Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так: tu tensio, sic vis (что в переводе с латинского означает: каково растяжение, такова и сила). "Сила любой пружины,- писал Гук,- пропорциональна ее растяжению". Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими. Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д. Для пластических деформаций закон Гука не выполняется. В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы. Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно б миллионов! Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за "лучное разоружение" не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет. Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием. В наше время стрельба из лука является лишь одним из видов спорта. Заключение Роберт Гук был одним из наиболее значительных ученых 17-ого столетия. В то время как его исследования и результаты часто скрывались его соперником Иссаком Ньютоном, было невозможно подвергнуть сомнению значение его разработок в таких областях как физика, астрономия, биология, медицина. Можно было бы сказать, что для Англии он был эквивалентом гения 14-ого столетия Леонардо да Винчи, что он был истинным человеком Ренессанса, который постоянно искал ответы на вопросы, и изобретал новые научные приборы. Изобретения Гука включают пружинное управление балансиром в часах и первый телескоп-рефлектор. Гук также работал как архитектор, хотя его мечты о перепроектировании Лондона после Большого пожара 1666 были ограничены меньшими размерами. Важно понять, что Роберт Гук революционно продвинул микроскопию и астрономию, открыл двери, которые в один прекрасный день привели к открытиям ученых типа доктора Эдвина Хаббла, и что некоторые из его других его изобретений типа кардана, который используется в автомобильной промышленности, и его пружинного балансира, который являются основной частью механических часов, которые мы носим. Закон Гука и его теория окисления все еще используются современными учеными. Увы, для такого гения и для всех его триумфов, Гук был болезненным с детства ребенком и ожесточенным потерей отца в свои 13 лет. Роберт Гук был повторно захоронен где-то в Северном Лондоне в 18-ом столетии, в месте, которое никому не известно достоверно. Если его останки будут найдены, профессор Майкл Купер из Лондонского университета планирует использовать судебную методику антропологии для восстановления лица Роберта Гука, и благодаря этому, возможно большего признания, которое он заслуживает. Единственное изображение Роберта Гука, которым мы располагаем до сих пор, было витраж окна мемориала Гука в Cв. Бишопсгейт Элен, но оно было разрушено при бомбардировке. Список литературы 1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 2012. 2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 2014. 3. Гурский И.П. Элементарная физика. М.: Наука, 2014. 4. Большая Советская Энциклопедия в 30 томах. Под ред. Прохорова А.М., 3 издание, М., Советская энциклопедия, 2014. 5. Дорфман Я.Г. Всемирная история физики с начала XIX до середины XX вв. М., 2015. |