Главная страница

Курсовой. Курсовой Поляковой. Состояния вопроса 4 1 История развития электрофореза 4


Скачать 490.5 Kb.
НазваниеСостояния вопроса 4 1 История развития электрофореза 4
АнкорКурсовой
Дата24.11.2020
Размер490.5 Kb.
Формат файлаdoc
Имя файлаКурсовой Поляковой.doc
ТипРеферат
#153256
страница5 из 5
1   2   3   4   5

2.7 Электрические и электрофизиологические параметры объектов электростимуляции


При разработке аппаратов для электростимуляции скелетной мускулатуры, внутренних тканей органов, необходимо знать особенности процессов, протекающих в зоне стимуляционного воздействия, в том числе процессов, связанных с изменением междуэлектродного сопротивления.

1 Сопротивления кожи и подкожных тканей существенно различаются. Участки мышечной ткани, находящейся под биполярными электродами, условно можно считать гомогенными, однако различные органы и части тела нельзя характеризовать одинаковыми значениями удельного сопротивления, так как между далеко расположенными электродами оказываются разнородные ткани и органы. Это важно учитывать при разработке методов электростимуляции, так как целесообразно биполярное наложение пары электродов одного канала электростимулятора на стимулируемую мышцу и нежелательно (даже недопустимо) их разнесение на разные группы мышц и тем более на одноименные мышцы противоположной стороны тела. Продольное сопротивление мышц, например, в звуковом диапазоне частот примерно в 2 раза меньше поперечного, что указывает на целесообразность такого наложения электродов, при котором биологический участок электрической цепи замыкается по ходу мышечных волокон и их синаптического аппарата, так как при этом для обеспечения сокращения мышцы нужна меньшая мощность стимулирующих электрических воздействий.

2 Сопротивление междуэлектродной цепи зависит от силы тока. Эта зависимость сходна с соответствующей зависимостью в электролите, чем меньше плотность тока, тем больше сопротивлении цепи. Например, при частоте синусоидального тока 12 кГц, площади электродов 1 см², междуэлектродном расстоянии 2 см и силе тока 50 мкА сопротивление кожи составляло 312±14 Ом, а при силе тока 100 мкА – 28З±11 Ом (исследовано 28 здоровых мужчин).

3 Полное сопротивление Z кожи и лежащих под нею тканей состоит из активного R и реактивного (емкостного) Хс сопротивлений, которые зависят от емкости С. R – это омическое сопротивление кожи и электролитов подкожных тканей, С – сумма емкости клеток ткани и поляризационной емкости, образующейся на границе тканей с различными удельными сопротивлениями. Поэтому при изменении частоты пропускаемого синусоидального тока электрические характеристики исследуемого участка тела человека изменяются. Разность электрических параметров жидких и клеточных фаз организма максимальна на частотах порядка сотен герц.

На низких частотах энергия стимулирующих сигналов в основном приходится на кожу, где расположено много различных рецепторов, при раздражении которых у человека появляются ощущения дискомфорта. При повышении частоты увеличивается емкостная проводимость (соответственно изменяется сдвиг по фазе), за счет чего уменьшается падение напряжения на роговом слое кожи и все большая часть энергии приходится на внутренние ткани.

Участки поверхности кожи с толстым роговым слоем обладают в норме наибольшим активным сопротивлением и наименьшей емкостью. Опубликованы данные о результатах измерения у 104 здоровых лиц обоего пола полного сопротивления и фазового угла для середины внутренней стороны предплечья в полосе частот 1-20 кГц. Электродами служили два диска из нержавеющей стали диаметром 2 см, расстояние между их центрами составляло 4 см.

Полное сопротивление в полосе частот от 1 до 20 кГц снижалось в среднем от 6487 до 507 Ом, составляя (1882±468) Ом при частоте 4 кГц. Фазовый угол при этом уменьшался от 75 до 57º и составлял 73,6±З,6°. Удаление рогового слоя кожи снижало полное сопротивление, при частоте 4 кГц до 304±54 Ом и фазовый угол φ до 10±1,8°.

4 Чем больше площадь электродов, тем меньше полное сопротивление кожи и подкожных тканей, так как проводимость растет при увеличении площади поперечного сечения проводника. Для измерений целесообразно применять жидкостные электроды, у которых площадью является поверхность кожи со всеми ее углублениями и выступами, с которыми соприкасается жидкость, налитая в плотно прижатую к коже трубку из диэлектрика.

5 С целью уменьшения электрического сопротивления кожа перед электростимуляцией обрабатывается нетоксичным веществом, растворяющим жир. Спирт для обработки кожи непригоден, так как наряду с обезжириванием он удаляет влагу из эпидермиса и особенно из протоков потовых желез, в результате чего появляются амплитудные и частотные искажения сигналов. Установлено, что обрабатывать кожу с целью увеличения ее проводимости рационально эфиром с последующим применением токопроводящих паст или растворов.

6 Оптимальной накожной электродной системой является такая система, которая минимизирует изменения полного сопротивления во время движения, хорошо прилегает к поверхности тела, обеспечивая одинаковое полное сопротивление по всей поверхности электрода, причем не имеет точек жжения. Термическое повреждение кожи широко варьируется в зависимости от ее полного сопротивления, значение которого, как уже отмечалось, зависит от способа обработки, а также от площади поверхности электрода, контактирующей с кожей.

Плоские накожные электроды имеют большую собственную поверхность, но площадь контактной поверхности между электродом и кожей зависит от давления, с которым электрод прижимается к коже.

7 Электрическое сопротивление постепенно снижается, особенно в течение первых 30 мин после наложения электродов на кожу человека. Это надо учитывать при электростимуляции; например, если в начале процедуры напряжение стимулирующего сигнала было установлено режиме пороговой стимуляции, то в конце ее могут появиться сверху пороговые сокращения мышцы при том же уровне сигнала. В целом полное сопротивление является функцией частоты и плотности тока, в связи с чем целесообразно проводить оптимизацию - минимизировать мощность, поглощаемую участком электроды - кожа. При наличии основной и гармонических составляющих сигнала большая часть энергии должна поступать к нервно – мышечному аппарату.

8 Имеются топографические различия в электрическом сопротивлении кожи и подкожных тканей: на голове оно меньше, чем па предплечье; на конечностях больше, чем на туловище.

9 Электрическое сопротивление кожи и подкожных тканей человека зависит от температуры окружающего воздуха. С ее понижением кровеносные сосуды кожи сужаются, что приводит к увеличению сопротивления ткани. Например, при резком понижении температуры окружающего воздуха и кожи испытуемого даже после обработки кожи специальной пастой сопротивление увеличивалось при приложении постоянного тока от 10 до 100 кОм. Установлено, что при изменении температуры кожи на 20 0С ее проводимость (по переменному току) изменяется нелинейно на 52%. Во избежание этих изменений нами были разработаны электроды с автоматической, регулировкой подогрева в пределах 38-43ºС, что позволило существенно уменьшить полное сопротивление кожи под электродами и тем самым снизить мощность сигналов при электростимуляции нервно-мышечного аппарата и проводить процедуру при практически стабильном переходном сопротивлении системы электроды – кожа – подкожные ткани.

10 На проводимость живой ткани влияют воздействия на органы чувств, различные формы физической и психической деятельности (например, испуг и др.). Измерение проводимости кожи в диапазоне частот 0–100 Гц применяется для регистрации кожно-гальванического рефлекса.

11 Перспективно использование результатов измерений полного сопротивления мышцы для характеристики ее функционального состояния.

При сокращении мышцы ее полное сопротивление возрастает, при расслаблении - уменьшается. Осциллограмма этих изменений отражает механические явления в мышце во время ее работы.

Изложенное выше указывает на наличие нелинейных изменений электрических характеристик кожи и подкожных тканей в зависимости от различных условий. Полное сопротивление различно у людей; иногда оно зависит от топографической области исследуемого участка тела. Изменения проводимости можно использовать как объективный показатель реакции нервно-мышечного аппарата на электростимуляционные воздействия.
Список используемой литературы

1 Алексеева Р.Д., Алексеев С.Г., Экономика, организация производства и управления предприятием: Учеб. Пособие – Улан-Удэ Изд-во ВСГУТУ, 2014 – 280 с.

2 Ахутин В.М., Немирко А.П., Першин Н.Н. и др, Биотехнические системы. Теория и проектирование: Учеб. пособие. – Л.: Издательство Ленингр. ун-та, 1981. – 220 с.

3 Белобородов, В.Л. Органическая химия: учеб. для вузов: в 2 кн. / В.Л. Белобородов, С.Э. Зурабян, А.П. Лузин, Н.А. Тюкавкина; под. ред. Н.А. Тюкавкиной. – М.: Дрофа, 2002.

4 Белов С.В., Ильницкая А.В. и др. Безопасность жизнедея- тельности. Учебник для вузов / 6 изд-е, перераб. и доп. - М.: Высш. шк., 2006. - 448 с.

5 В.М. Богомолов. –Техника и методики физиотерапевтических процедур М.: Медицина, 1963. – 352 с.

6 Духин С.С., Дерягин Б.В. Электрофорез. – М.: Наука, 1976.– 316 с.

7 Еремина Т.В. Безопасность жизнедеятельности. Эргономические основы безопасности труда: учеб. пособие. – Улан-Удэ: Изд-во ВСГУТУ, 2014. – 116 с.
















З.240.01.1.11.402.0000ПЗ

Лист



















Изм.

Лист

документа

Подпись

Дата



1   2   3   4   5


написать администратору сайта