Главная страница

Создание антиобрастающих покрытий на основе сшитых силиконовых олигомеров и полимеров


Скачать 0.99 Mb.
НазваниеСоздание антиобрастающих покрытий на основе сшитых силиконовых олигомеров и полимеров
Дата29.06.2022
Размер0.99 Mb.
Формат файлаdocx
Имя файлаDiplom_tut_33__33__33.docx
ТипДокументы
#619811
страница4 из 4
1   2   3   4

10. Almeida E., Diamantino T.C., de Sousa O. Marine paints: The particular case of antifouling paints // Prog. Org. Coatings. 2007. Vol. 59, № 1. P. 2–20.

11. Giúdice C.A. et al. High-build antifouling paints based on rosin and chlorinated rubber // J. Chem. Technol. Biotechnol. 2007. Vol. 38, № 4. P. 265–276.

12. Zhou W. et al. Preparation and evaluation of natural rosin-based zinc resins for marine antifouling // Prog. Org. Coatings. Elsevier B.V., 2021. Vol. 157, № November 2020. P. 106270.

13. Clarkson T.W. Mercury: major issues in environmental health. // Environ. Health Perspect. 1993. Vol. 100. P. 31–38.

14. Vukadin I., Zvonarić T., Odžak N. Fate and distribution of toxic heavy metals in some marine organisms from the eastern Adriatic coast // Helgoländer Meeresuntersuchungen. 1995. Vol. 49, № 1–4. P. 679–688.

15. Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review // Environ. Int. 2008. Vol. 34, № 2. P. 292–308.

16. Maguire R.J. Environmental aspects of tributyltin // Appl. Organomet. Chem. 1987. Vol. 1, № 6. P. 475–498.

17. Mahmoud A.A. et al. Organotin polymers. XV. Azeotropy in terpolymerization reactions of tributyltin acrylate or methacrylate with itaconic acid or dimethylitaconate and acrylonitrile // J. Appl. Polym. Sci. 1992. Vol. 44, № 10. P. 1861–1867.

18. Nehring S. After the TBT era: Alternative anti-fouling paints and their ecological risks // Senckenbergiana maritima. 2001. Vol. 31, № 2. P. 341–351.

19. Zhou X. et al. Inhibition of Marine Biofouling by Use of Degradable and Hydrolyzable Silyl Acrylate Copolymer // Ind. Eng. Chem. Res. 2015. Vol. 54, № 39. P. 9559–9565.

20. Bressy C. et al. Optimized silyl ester diblock methacrylic copolymers: A new class of binders for chemically active antifouling coatings // Prog. Org. Coatings. 2014. Vol. 77, № 3. P. 665–673.

21. Monfared H., Sharif F. Design guidelines for development of tin-free antifouling self-polishing coatings using simulation // Prog. Org. Coatings. 2008. Vol. 63, № 1. P. 79–86.

22. Bressy C. et al. Tin-free self-polishing marine antifouling coatings // Advances in Marine Antifouling Coatings and Technologies. Elsevier, 2009. P. 445–491.

23. Thomas K. V., Brooks S. The environmental fate and effects of antifouling paint biocides // Biofouling. 2010. Vol. 26, № 1. P. 73–88.

24. Thomas K. V, McHugh M., Waldock M. Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate // Sci. Total Environ. 2002. Vol. 293, № 1–3. P. 117–127.

25. Lagerström M., Ytreberg E. Quantification of Cu and Zn in antifouling paint films by XRF // Talanta. 2021. Vol. 223. P. 121820.

26. Voulvoulis N., Scrimshaw M.D., Lester J.N. Alternative antifouling biocides // Appl. Organomet. Chem. 1999. Vol. 13, № 3. P. 135–143.

27. Chesworth J.., Donkin M.., Brown M.. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.) // Aquat. Toxicol. 2004. Vol. 66, № 3. P. 293–305.

28. Gallucci F. et al. Ecological effects of Irgarol 1051 and Diuron on a coastal meiobenthic community: A laboratory microcosm experiment // Ecol. Indic. 2015. Vol. 58. P. 21–31.

29. Cowling M.. et al. An alternative approach to antifouling based on analogues of natural processes // Sci. Total Environ. 2000. Vol. 258, № 1–2. P. 129–137.

30. Ralston E., Swain G. Bioinspiration—the solution for biofouling control? // Bioinspir. Biomim. 2009. Vol. 4, № 1. P. 015007.

31. Debiemme-Chouvy C. et al. Electrochemical treatments using tin oxide anode to prevent biofouling // Electrochim. Acta. 2011. Vol. 56, № 28. P. 10364–10370.

32. Lou S. et al. Biofouling protection for marine optical windows by electrolysis of seawater to generate chlorine using a novel Co-based catalyst electrode // Colloids Surfaces A Physicochem. Eng. Asp. 2022. Vol. 638. P. 128270.

33. Abioye O.P., Loto C.A., Fayomi O.S.I. Evaluation of Anti-biofouling Progresses in Marine Application // J. Bio- Tribo-Corrosion. 2019. Vol. 5, № 1. P. 22.

34. NRL. The History of the Prevention of Fouling // Https://Www.Usni.Org/Magazines/Proceedings/1952/July/History-Prevention-Fouling. 1952. № 580. P. 211–222.

35. Kuznetsov B.A. et al. An electrochemical method for measuring metabolic activity and counting cells // Appl. Biochem. Microbiol. 2006. Vol. 42, № 5. P. 525–533.

36. Legg M. et al. Acoustic methods for biofouling control: A review // Ocean Eng. 2015. Vol. 103. P. 237–247.

37. Su Y.P. et al. Anti-fouling piezoelectric PVDF membrane: Effect of morphology on dielectric and piezoelectric properties // J. Memb. Sci. 2021. Vol. 620. P. 118818.

38. Maan A.M.C. et al. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings // Adv. Funct. Mater. 2020. Vol. 30, № 32.

39. C. B. et al. Average nanorough skin surface of the pilot whale ( Globicephala melas , Delphinidae): considerations on the self-cleaning abilities based on nanoroughness // Mar. Biol. 2002. Vol. 140, № 3. P. 653–657.

40. Chen D. et al. Bio‐inspired drag reduction surface from sharkskin // Biosurface and Biotribology. 2018. Vol. 4, № 2. P. 39–45.

41. Sakamoto A. et al. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove // FEMS Microbiol. Lett. 2014. Vol. 361, № 1. P. 10–16.

42. Armstrong E. et al. Marine microbial natural products in antifouling coatings // Biofouling. 2000. Vol. 16, № 2–4. P. 215–224.

43. Chen L., Qian P.-Y. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012 // Mar. Drugs. 2017. Vol. 15, № 9. P. 264.

44. Bhattarai H.D. et al. The study of antagonistic interactions among pelagic bacteria: a promising way to coin environmental friendly antifouling compounds // Hydrobiologia. 2006. Vol. 568, № 1. P. 417–423.

45. Selim M.S. et al. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings // J. Mater. Chem. B. 2020. Vol. 8, № 17. P. 3701–3732.

46. жл 1101.

47. Mirabedini S.M. et al. Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings // Colloids Surfaces A Physicochem. Eng. Asp. 2008. Vol. 317, № 1–3. P. 80–86.

48. Wörz A. et al. Protein-resistant polymer surfaces // J. Mater. Chem. 2012. Vol. 22, № 37. P. 19547.

49. Banerjee I., Pangule R.C., Kane R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms // Adv. Mater. 2011. Vol. 23, № 6. P. 690–718.

50. Leng C. et al. Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins // ACS Appl. Mater. Interfaces. 2015. Vol. 7, № 30. P. 16881–16888.

51. Laschewsky A. Structures and Synthesis of Zwitterionic Polymers // Polymers (Basel). 2014. Vol. 6, № 5. P. 1544–1601.

52. Анисимов А.А., Арзуманян А.В., Быстрова А.В., Василенко Н.Г., Галлямов М.О., Егорова Е.В., Зачернюк А.Б., Калинина А.А., Кононевич Ю.Н., Котов В.М., И.Б. Мешков, Миленин С.А., Молодцова Ю.А., Музафаров А.М., Тарасенков А.С., Темников М.Н., Шрагин Д.И. Э.И.В. Бесхлорная Химия Силиконов - Дорога В Будущее. 2018. 308 p.

53. Jia P. et al. Thermal degradation mechanism and flame retardancy of MQ silicone/ epoxy resin composites // Polym. Degrad. Stab. 2016. Vol. 134. P. 144–150.

54. Huang W., Huang Y., Yu Y. Synthesis of MQ silicone resins through hydrolytic condensation of ethyl polysilicate and hexamethyldisiloxane // J. Appl. Polym. Sci. 1998. Vol. 70, № 9. P. 1753–1757.

55. Egorova E. V. et al. Polycondensation of alkoxysilanes in an active medium as a versatile method for the preparation of polyorganosiloxanes // Dokl. Chem. 2009. Vol. 424, № 1. P. 15–18.

56. Cardoso V. et al. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications // Polymers (Basel). 2018. Vol. 10, № 2. P. 161.

57. Dhara M.G., Banerjee S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups // Prog. Polym. Sci. 2010. Vol. 35, № 8. P. 1022–1077.

58. Teng H. Overview of the Development of the Fluoropolymer Industry // Appl. Sci. 2012. Vol. 2, № 2. P. 496–512.

59. Miyamoto Y., Nakafuku C., Takemura T. Crystallization of Poly(chlorotrifluoroethylene) // Polym. J. 1972. Vol. 3, № 2. P. 122–128.

60. Speerschneider C.J., Li C.H. A Correlation of Mechanical Properties and Microstructure of Polytetrafluoroethylene at Various Temperatures // J. Appl. Phys. 1963. Vol. 34, № 10. P. 3004–3007.

61. Xiong Z. et al. Flexible PVDF membranes with exceptional robust superwetting surface for continuous separation of oil/water emulsions // Sci. Rep. 2017. Vol. 7, № 1. P. 14099.

62. Schlaich C. et al. Surface-Independent Hierarchical Coatings with Superamphiphobic Properties // ACS Appl. Mater. Interfaces. 2016. Vol. 8, № 42. P. 29117–29127.

63. Gardiner J. Fluoropolymers: Origin, Production, and Industrial and Commercial Applications // Aust. J. Chem. 2015. Vol. 68, № 1. P. 13.

64. Cao J., Wei Y., Cheng Y. Study on the binding interaction between perfluoroalkyl acids and DNA // Environ. Sci. Pollut. Res. 2013. Vol. 20, № 12. P. 8355–8363.

65. Mulkiewicz E. et al. Evaluation of the acute toxicity of perfluorinated carboxylic acids using eukaryotic cell lines, bacteria and enzymatic assays // Environ. Toxicol. Pharmacol. 2007. Vol. 23, № 3. P. 279–285.

66. Lallas P.L. The Stockholm Convention on Persistent Organic Pollutants // Am. J. Int. Law. 2001. Vol. 95, № 3. P. 692–708.

67. Солдатов М.А. et al. Синтез фторсодержащих кремнийорганических сополимеров и их применение для получения стабильных гидрофобных покрытий на основе эпоксидной смолы *. 2014. P. 267–272.

68. Haszeldine R.N., Newlands M.J., Plumb J.B. 375. Polyfluoroalkyl compounds of silicon. Part VI. Reaction of 3,3,3-trifluoropropene with silane, and the conversion of the products into silicones and polysiloxanes // J. Chem. Soc. 1965. P. 2101.

69. BOUTEVIN B. et al. ChemInform Abstract: Study of the Alkylation of Chlorosilanes. Part 1. Synthesis of Tetra( 1H,1H,2H,2H-polyfluoroalkyl)silanes. // ChemInform. 2010. Vol. 25, № 7. P. no-no.

70. Ярош А.А., Глазков А.А., Сахаров А.М. Синтез новых фторкремнийорганических соединений и исследование свойств получаемых олигомеров и полимеров на их основе. 2016. Vol. 1, № 104. P. 2–8.

71. Ishikawa T. Guanidine Chemistry // Chem. Pharm. Bull. 2010. Vol. 58, № 12. P. 1555–1564.

72. Zhang Y., Jiang J., Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts // Polymer (Guildf). 1999. Vol. 40, № 22. P. 6189–6198.

73. Selig P. Guanidine Organocatalysis // Synthesis (Stuttg). 2013. Vol. 45, № 06. P. 703–718.

74. Ishikawa T. Guanidine chemistry // Chem. Pharm. Bull. 2010. Vol. 58, № 12. P. 1555–1564.

75. Chinchilla R., Nájera C., Sánchez-Agulló P. Enantiomerically pure guanidine-catalysed asymmetric nitroaldol reaction // Tetrahedron: Asymmetry. 1994. Vol. 5, № 7. P. 1393–1402.

76. Xie W. et al. Hydrogen bond complexasion to prepare guanidine phosphate flame retardant poly(vinyl alcohol) membrane with high transparency // Compos. Part B Eng. 2019. Vol. 176. P. 107265.

77. Tunçel K.Ş. et al. The impact of guanidine carbonate incorporation on the molecular structure of polyacrylonitrile precursor fiber stabilized by a multistep heat treatment strategy // Polym. Eng. Sci. 2022. Vol. 62, № 4. P. 1081–1095.

78. Sherazi T.A. et al. Guanidine functionalized radiation induced grafted anion-exchange membranes for solid alkaline fuel cells // Int. J. Hydrogen Energy. 2015. Vol. 40, № 1. P. 786–796.

79. Monera O.D., Kay C.M., Hodges R.S. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions // Protein Sci. 1994. Vol. 3, № 11. P. 1984–1991.

80. Wei D. et al. Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride) // Mater. Sci. Eng. C. 2009. Vol. 29, № 6. P. 1776–1780.

81. Walczak M., Richert A., Burkowska-But A. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes // J. Ind. Microbiol. Biotechnol. 2014. Vol. 41, № 11. P. 1719–1724.

82. Brzezinska M.S. et al. Antimicrobial Activity of Polyhexamethylene Guanidine Derivatives Introduced into Polycaprolactone // J. Polym. Environ. 2018. Vol. 26, № 2. P. 589–595.

83. Guan Y. et al. Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: Part I. Optimization of synthetic conditions and antimicrobial activities // Cellulose. 2008. Vol. 15, № 4. P. 609–618.

84. Drozdov F.V. et al. Synthesis of guanidinopropyl triethoxysilane and its homopolymer as a new class of organosilicon antibacterial agents // J. Organomet. Chem. 2020. Vol. 918. P. 121243.

85. Tarasenkov A.N. et al. Biocidal properties investigation of the new guanidine-containing alkoxysilanes and siloxanes and epoxy materials modified by them // J. Organomet. Chem. 2022. Vol. 959. P. 122211.

86. Rostami H., Shiri L. Fe3O4@SiO2—CPTMS—Guanidine—SO3H-catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Pyrrole Derivatives under Solvent-Free Conditions // Russ. J. Org. Chem. 2019. Vol. 55, № 8. P. 1204–1211.

87. Heidari L., Shiri L. CoFe 2 O 4 @SiO 2 -CPTES-Guanidine-Cu(II): A novel and reusable nanocatalyst for the synthesis of 2,3-dihydroquinazolin-4(1 H )-ones and polyhydroquinolines and oxidation of sulfides // Appl. Organomet. Chem. 2019. Vol. 33, № 3. P. e4636.
1   2   3   4


написать администратору сайта