Главная страница
Навигация по странице:

  • Рис.4. Аппарат погружного горения для выпаривания сточных вод

  • Рис.5. Схема типовой нефтеловушки

  • Рис.6. Нефтеловушка Гипроспецпромстроя со скребковым механизмом

  • Рис. 5.7. Схема установки для напорной флотации

  • Рис.8. Схема установки для безнапорной флотации

  • Рис.9. Изменение концентрации мазута в конденсате во время пропаривания фильтра при регенерации фильтрующего материала

  • Рис.10. Технологическая схема очистки сточных вод, содержащих нефтепродукты

  • 5. Очистка обмывочных вод поверхностей нагрева котлов

  • Рис.11. Схема установки для обезвреживания и нейтрализации обмывочных вод котлов и РВП

  • 6. Очистка сточных вод химических промывок и консервации оборудования

  • Рис.12. Схема очистки промывочных сточных вод

  • МОДУЛЬ7. Сточные воды тэс и их очистка Классификация сточных вод тэс


    Скачать 0.93 Mb.
    НазваниеСточные воды тэс и их очистка Классификация сточных вод тэс
    Дата10.05.2023
    Размер0.93 Mb.
    Формат файлаdoc
    Имя файлаМОДУЛЬ7.doc
    ТипДокументы
    #1117949
    страница3 из 4
    1   2   3   4

    4. Очистка сточных вод, содержащих нефтепродукты



    Рис.4. Аппарат погружного горения для выпаривания сточных вод:

    1 - погружная горелка; 2 - аппарат; 3 - вентилятор; 4 - бак; 5 - регулятор уровня

    Для очистки сточных вод от нефтепродуктов применяются методы отстаивания, флотации и фильтрования.

    Метод отстаивания основан на способности самопроизвольного разделения воды и нефтепродуктов. Частицы нефтепродуктов под действием сил поверхностного натяжения приобретают сферическую форму, и их размеры находятся в диапазоне от 2 до 3102 мкм. Величина, обратная размеру частицы, называется степенью дисперсности. В основе процесса отстаивания лежит принцип выделения нефтепродуктов под действием разности плотностей воды и частиц масла. Содержание нефтепродуктов в стоках находится в широких пределах и составляет в среднем 100 мг/л.

    Отстаивание нефтепродуктов производится в нефтеловушках (рис.5). Вода подается в приемную камеру и, пройдя под перегородкой, попадает в отстойную камеру, где и происходит процесс разделения воды и нефтепродуктов. Очищенная вода, пройдя под второй перегородкой, выводится из нефтеловушки, а нефтепродукты образуют пленку на поверхности воды и удаляются специальным устройством. При выборе нефтеловушки необходимо принимать следующие допущения: скорость движения воды во всех точках поперечного сечения одинакова; поток воды имеет ламинарный характер; скорость всплывания частиц нефтепродуктов постоянна в течение всего времени прохождения потока.



    Рис.5. Схема типовой нефтеловушки:

    1—сточная вода; 2— приемная камера; 3—отстойная зона: 4—очищенная вода; 5— вертикальные полупогруженные перегородки; 6—нефтесборные трубы; 7—пленка всплы­вших нефтепродуктов
    Значительное влияние на эффективность работы нефтеловушки оказывает температура воды. Увеличение температуры воды приводит к снижению ее вязкости, что способствует улучшению условий выделения частиц. Например, мазут при температуре воды ниже 30 С оседает в нефгеловушке, в интервале 30...40 °С частицы мазута находятся во взвешенном состоянии и лишь свыше 40 °С проявляется эффект всплытия частиц.



    Рис.6. Нефтеловушка Гипроспецпромстроя со скребковым механизмом:

    1 - приемная камера; 2 - перегородка; 3 - отстойная зона; 4 - перегородка; 5 - выпускная камера; 6 - переливной лоток; 7 - скребок; 8 - поворотные щелевые трубы; 9 - приямок; 10 - гидроэлеватор

    На рис.6 представлена нефтеловушка Гидроспецпромстроя. Нефтепродукты, всплывающие на поверхность в отстойных камерах, сгоняют скребковым устройством к щелевым поворотным трубам, расположенным в начале и конце отстойных зон каждой секции, через которые они выводятся из нефтеловушки. При наличии тонущих примесей в сточной воде они выпадают на дно нефтеловушки, сгребаются тем же скребковым транспортером в приямок и при помощи данного клапана (или гидроэлеватора) выводятся из нефтеловушки. Нефтеловушки такого типа рассчитаны на производительность 15...220 кг/с по сточной воде.



    Рис. 5.7. Схема установки для напорной флотации:

    1—вход воды; 2—приемный резервуар; 3—всасывающая труба; 4—воздухопровод; 5—насос; 6—флотационная камера; 7—пеносборник; 8—отвод очищенной воды; 9—напорная емкость
    Флотационный метод очистки воды заключается в образовании комплексов частица нефтепродуктов - пузырек воздуха с последующим выделением этих комплексов из воды. Скорость всплывания таких комплексов в 102...103 раз превышает скорость всплывания частиц нефтепродуктов. По этой причине флотация гораздо эффективнее отстаивания.



    Рис.8. Схема установки для безнапорной флотации:

    1—вход воды; 2—приемный резервуар; 3—всасывающая труба; 4—воздухопровод; 5—насос; 6—флотационная камера; 7—пеносборник; 8—отвод очищенной воды
    Различают напорную флотацию, при которой пузырьки воздуха выделяются из пересыщенного раствора его в воде, и безнапорную, которая осуществляется при помощи пузырьков воздуха, вводимых в воду специальными устройствами.

    При напорной флотации (рис.7) воздух растворяется в воде под избыточным давлением до 0,5 МПа, для чего в трубопровод перед насосом подается воздух, а затем водовоздушная смесь в течение 8—10 мин выдерживается в специальной напорной емкости, откуда и подается во флотатор, где происходят сброс давления, образование пузырьков воздуха и собственно флотационный процесс разделения воды и примеси. При снижении давления на входе воды во флотатор воздух, растворенный в воде, выделяется практически мгновенно, образуя пузырьки.

    При безнапорной флотации (рис.8) образование пузырьков происходит за счет механических (насосом, эжектором) или электрических сил и во флотатор вводится готовая дисперсная система пузырьки -вода. Оптимальные размеры пузырьков равны 15—30 мкм. Скорость всплывания пузырьков такого размера с захваченными частицами нефти составляет в среднем 0,9...10-3 м/с, что в 900 раз превышает скорость всплывания частицы нефти размером 1,5 мкм.

    Фильтрование замазученных и замасленных вод осуществляется на заключительной стадии очистки. Процесс фильтрования основан на прилипании эмульгированных частиц нефтепродуктов к поверхности зерен фильтрующего материала. Так как фильтрованию предшествует предварительная очистка сточных вод (отстаивание, флотация), перед фильтрами концентрация нефтепродуктов невысока и составляет 10-4...10-6 в объемных долях.

    При фильтровании сточных вод частицы нефтепродуктов выделяются из потока воды на поверхности зерен фильтрующего материала и заполняют наиболее узкие поровые каналы. При гидрофобной поверхности (не взаимодействующей с водой) частицы хорошо прилипают к зернам, при гидрофильной (взаимодействующей с водой) прилипание затруднено из-за наличия гидратной оболочки на поверхности зерен. Однако прилипающие частицы вытесняют гидратную оболочку и начиная с какого-то момента времени фильтрующий материал работает как гидрофобный.



    Рис.9. Изменение концентрации мазута в конденсате во время пропаривания фильтра при регенерации фильтрующего материала
    При работе фильтра частицы нефтепродуктов постепенно заполняют объем пор и насыщают фильтрующий материал. В итоге по истечении некоторого времени устанавливается равновесие между количеством масла, выделяющегося из потока на стенки, и количеством масла, стекающего в виде пленки в следующие по ходу потока слои фильтрующего материала.

    С течением времени насыщенность нефтепродуктами сдвигается к нижней границе фильтрующего слоя и концентрациямасла в фильтрате увеличивается. В этом случае фильтр отключается на регенерацию. Повышение температуры воды способствует уменьшению вязкости нефтепродуктов и, следовательно, более равномерному его распределению по высоте слоя.

    Традиционными материалами для загрузки фильтров являются кварцевый песок и антрацит. Иногда применяют сульфоуголь, отработанный в Nа-катионитовый фильтр. В последнее время применяют доменный и мартеновский шлак, керамзит, диатомит. Специально для этих целей ЭНИН им. Г. М. Кржижановского разработал технологию получения полукокса из канско-ачинских углей.



    Рис.10. Технологическая схема очистки сточных вод, содержащих нефтепродукты:

    1—приемный бак: 2—нефтеловушка; 3—промежуточные баки; 4—флотатор; 5—напорная емкость; 6—эжектор; 7—мазутоприемник; 8—механический фильтр; 9—угольныий фильтр; 10—бак промывочной воды: 11—ресивер; 12—компрессор; 13—насосы: 14—раствор коагулянта
    Регенерацию фильтра следует производить водяным паром давлением 0,03...0,04 МПа через верхнее распределительное устройство. Пар разогревает уловленные нефтепродукты, и они под давлением вытесняются из слоя. Длительность регенерации обычно не превышает 3 ч. Вытеснение масла из фильтра сопровождается сначала ростом его концентрации в конденсате, а затем ее уменьшением (рис.9). Конденсат сбрасывается в баки перед нефтеловушкой или флотатором.

    Эффективность очистки сточных вод в насыпных фильтрах от нефтепродуктов составляет около 80%. Содержание нефтепродуктов составляет 2...4 мг/кг, что значительно превышает ПДК. Вода с таким качеством может направляться для технологических целей ТЭС. В ряде случаев этот фильтрат необходимо доочистить на сорбционных (загруженных активированным углем) или намывных фильтрах.

    Полная типовая схема очистки сточных вод от нефтепродуктов показана на рис.10. Сточные воды собираются в буферные усреднительные баки, в которых происходит выделение части наиболее крупных грубодисперсных. примесей и частиц нефтепродуктов. Сточная вода, частично освобожденная от примесей, направляется в нефтеловушку. Затем вода поступает в промежуточный бак и оттуда насосом подается на флотатор. Выделенные нефтепродукты направляются в мазутоприемник, затем подогреваются паром для снижения вязкости и эвакуируются из установки для сжигания.

    Частично очищенная вода направляется во второй промежуточный бак и подается из него на фильтровальную установку, состоящую из двух ступеней. Первая ступень представляет собой фильтр с двухслойной загрузкой из кварцевого песка и антрацита. Вторая ступень состоит из сорбционного фильтра. загруженного активированным углем. Степень очистки воды по этой схеме составляет около 95%.

    5. Очистка обмывочных вод поверхностей нагрева котлов

    Обмывочные воды регенеративных воздухоподогревателей (РВП) представляют собой кислые растворы (рН= 1,3...3), содержащие грубодисперсные примеси: оксиды железа, кремнекислоту, продукты недожога, нерастворившуюся часть золы, свободную серную кислоту, сульфаты тяжелых металлов, соединения ванадия, никеля, меди и др.

    В среднем обмывочная вода содержит, г/л: свободную кислоту (в пересчете на Н24) 4...5, железо 7...8, никель0,1...0,15, ванадий 0,3...0,8, медь 0,02...0,05, взвешенные вещества 0,5, сухой остаток 32...45.

    Сточные воды от обмывок РВП и конвективных поверхностей нагрева котлов обезвреживаются нейтрализацией их щелочами. При этом ионы тяжелых металлов осаждаются в шлам в виде соответствующих гидрооксидов. Так как обмывочные воды мазутных котлов содержат ванадий, шлам, образующийся при их нейтрализации, является ценным сырьем для металлургической промышленности. Поэтому процесс нейтрализации и очистки обмывочных вод организуется так. чтобы конечными продуктами являлись обезвреженная осветленная вода и обезвоженный ванадиевый шлам, который направляется на металлургические заводы.

    Нейтрализация обмывочных вод производится в одну или две стадии. При нейтрализации в одну стадию сточные воды обрабатываются известковым молоком до рН=9,5...10 и выпадения всех токсичных компонентов в осадок.

    На рис.11 показан разработанный ВТИ и Теплоэлектропроектом и внедренный на Киевской ТЭЦ-5 вариант схемы нейтрализации и обезвреживания обмывочных вод РВП. В этой схеме обмывочные воды подаются в бак-нейтрализатор, в который также дозируется и раствор извести. Раствор перемешивается насосами рециркуляции и сжатым воздухом, затем отстаивается в течение 7...8 ч, после чего часть осветленной воды (50—60%) используется повторно на обмывку котлов, а шлам подается для обезвоживания на фильтр-прессы типа ФПАКМ. Шлам шнековым транспортером отправляется на расфасовку и на склад. Производительность фильтр-пресса 70 кг/(м2ч). Фильтрат из фильтр-пресса поступает на катионитный фильтр для улавливания остатков катионов тяжелых металлов. Фильтрат катионитных фильтров сбрасывается в водоем.




    Рис.11. Схема установки для обезвреживания и нейтрализации обмывочных вод котлов и РВП:

    1—обмывочная вода; 2—бак-нейтрализатор; 3—насос; 4—фильтр-пресс; 5—техническая вода на промывку фильтровальной ткани; шнековый транспортер; 7—машина для зашивания мешков; 8—погрузчик; 9—бак-сборник; 10—насос фильтрата; 11—насос раствора соли; 12—бак-мерник раствора соли; 13—фильтрат; 14—регенерационный раствор; /5—катионитный фильтр; 16—известковое молоко; 17—мешалка; 18—насос; 19—осветленная вода на повторное использование; 20—сжатый воздух
    Регенерация фильтра производится раствором NаСl, регенерационные воды сбрасываются в бак-нейтрализатор. Вода обезвреживается, однако получаемый шлам обогащен оксидами железа, сернокислым кальцием и беден соединениями ванадия (пентаоксида ванадия менее 3...5%).

    Челябинским научно-исследовательским институтом металлургии (ЧНИИМ) совместно с Киевской ТЭЦ-5 разработан метод повышения содержания ванадия в осадке. При одностадийной нейтрализации в качестве реагента-осадителя используют смесь, содержащую гидрооксид железа Fе(ОH)2, кальция Са(ОН)2, магния Мg(ОН)2 и силикат-ион SiO32-. Процесс осаждения производится при рН=3,4...4,2.

    Для повышения концентрации соединения ванадия в шламе процесс осаждения можно организовать в две стадии. На первой стадии производится обработка щелочью (NаОН) до рН=4,5—4,0, при котором происходит осаждение Fе(ОН)3 и основной массы ванадия, а на второй стадии процесс нейтрализации проводится при рН=8,5...10, при котором осаждаются остальные гидроокиси. Вторая стадия осуществляется известью. В этом случае ценность представляет шлам, полученный на первой стадии нейтрализации.

    6. Очистка сточных вод химических промывок и консервации оборудования

    Сточные воды от предпусковых (после окончания монтажа) и эксплуатационных химических промывок и консервации оборудования представляют резкие, «залповые» сбросы с большим разнообразием содержащихся в них веществ.

    Общее количество загрязненных стоков от одной химической промывки, подлежащих очистке, м3, можно определить из выражения

    V=kа,

    где а—суммарный объем промывочных контуров, м3;

    К—коэффициент, равный 25 для газомазутных ТЭС и 15 дляпылеугольных, так как в последнем случае часть отмывочных вод с содержанием железа менее 100 мг/л может быть сброшена в ГЗУ.

    Различают два основных варианта очистки отмывочных и консервационных вод:

    • на ТЭС, работающих на жидком и газообразном топливе, а также на угольных ТЭС с разомкнутой (прямоточной) системой ГЗУ;

    • на ТЭС, работающих на твердом топливе с оборотной системой ГЗУ.

    По первому варианту предусматриваются следующие стадии очистки: сбор всех отработанных растворов в емкости-усреднители, выведение из раствора токсичных веществ второй группы, очистка воды от веществ третьей группы. Сбор и обезвреживание сточных вод производятся на установке, включающей двухсекционный открытый бассейн или емкость-усреднитель, баки-нейтрализаторы и бак для коррекции рН.

    Стоки первоначальных водных промывок оборудования, загрязненные продуктами коррозии и механическими примесями, направляются в первую секцию открытого бассейна. После отстаивания осветленная вода из первой секции должна перепускаться во вторую - усреднитель бассейна. В эту же секцию отводятся стоки с рН=6...8 от водных промывок после завершения операции по вытеснению кислых и щелочных растворов.

    Вода из секции-усреднителя должна повторно использоваться для подпитки оборотных систем водоснабжения или ГЗУ. Примерный состав стоков в бассейне-отстойнике указан в табл.2. Кислые и щелочные растворы от химических очисток оборудования собираются в баки-нейтрализаторы (рис.12), вмещающие 7...10 объемов очищаемого контура, для их взаимной нейтрализации. Растворы из баков-нейтрализаторов и использованные растворы от консервации оборудования направляются в бак для коррекции рН в целях проведения их окончательной нейтрализации, осаждения ионов тяжелых металлов (железа, меди, цинка), разложения гидразина, разрушения нитратов.

    Донейтрализация и осаждение железа производятся путем подщелачивания растворов известью до рН=10...12 в зависимости от состава обезвреживаемых сточных вод. Для осаждения шлама и осветления вода отстаивается не менее двух суток, после чего шлам удаляется на шламоотвал предочисток водоподготовительных установок или на золоотвал.

    Если в промывочных растворах на основе лимонной кислоты кроме железа присутствуют также медь и цинк, то для осаждения меди и цинка следует применять сульфид натрия, который необходимо добавлять в раствор после отделения шлама гидрооксида железа. Осадок сульфидов меди и цинка должен уплотняться отстаиванием не менее суток, после чего шлам удаляется на шламоотвал предочистки.



    Рис.12. Схема очистки промывочных сточных вод:

    1 - бак; 2 - бак-нейтрализатор; 3 - шламоотстойник; 4 - бак для коррекции рН; 5 - подача известкового молока; б - подача хлорной извести; 7 - подача сульфида натрия (Nа2S); 8 - серная кислота: 9 - подача воздуха; 10 - вода на очистку; 11 - вода на фильтр-пресс: 12 - сброс

    Для обезвреживания промывочных и консервирующих растворов, содержащих нитриты, можно использовать кислые промывочные растворы или производить обработку растворов кислотой. При этом следует учитывать, что при разрушении нитритов образуются газы NO и NО2, плотность которых выше плотности воздуха. Поэтому доступ в емкость, в которой проводилось обезвреживание растворов, содержащих нитрит, может быть разрешен только после тщательной вентиляции этой емкости и проверки ее на загазованность.

    Гидразин и аммиак, содержащиеся в сточных водах, могут быть разрушены обработкой растворов хлорной известью. При этом гидразин окисляется хлорной известью с образованием свободного азота. Для практически полного разрушения гидразина количество хлорной извести должно быть увеличено по сравнению со стехиометрическим примерно на 5%.

    При взаимодействии аммиака с хлорной известью образуется хлорамин, который в присутствии небольшого избытка аммиака окисляет его с образованием азота. При большом избытке аммиака в результате его взаимодействия с хлорамином образуется гидразин. Поэтому при обезвреживании хлорной известью растворов, содержащих аммиак, необходимо строго выдерживать стехиометрическую дозу извести.

    Аммиак можно нейтрализовать в результате взаимодействия его с углекислотой воздуха при аэрации раствора в бакенейтрализаторе или в баке для коррекции рН. Осветленная вода, образующаяся после обезвреживания промывочных и консервирующих растворов, должна быть дополнительно обработана для придания ей нейтральной реакции (рН=6,5...8,5) и повторно использована на технологические нужды электростанции. Гидразин присутствует в стоках лишь в течение нескольких суток после слива растворов в усреднитель. Позже гидразин уже не обнаруживается, что объясняется его окислением при каталитическом участии железа и меди.


    1   2   3   4


    написать администратору сайта