Главная страница

Россинская суд экспертиза. Судебная экспертиза типичные ошибки


Скачать 0.9 Mb.
НазваниеСудебная экспертиза типичные ошибки
АнкорРоссинская суд экспертиза.docx
Дата01.02.2017
Размер0.9 Mb.
Формат файлаdocx
Имя файлаРоссинская суд экспертиза.docx
ТипДокументы
#1669
страница22 из 40
1   ...   18   19   20   21   22   23   24   25   ...   40
"Смешанный" характер объекта. Объектами экспертизы нередко являются следы, содержащие биологический материал разных индивидуумов либо биологический материал одного индивидуума разной природы (например, кровь и выделения, разные виды выделений). Такие следы называются "смешанными". Наиболее часто "смешанные" объекты встречаются в экспертизах, назначаемых по половым преступлениям (сперма одного или нескольких лиц в смеси с вагинальными выделениями, кровью жертвы).

"Смешанный" характер объекта существенно затрудняет интерпретацию результатов, в особенности при использовании традиционных, иммунологических методов. При их применении не представляется возможным определить (если только не используется метод иммунофлюоресценции, позволяющий наблюдать результаты иммунологической реакции на клеточном уровне), за счет какого компонента смеси произошло связывание с той или иной группоспецифической сывороткой. Поэтому при исследовании смесей спермы и вагинальных выделений (или крови) жертвы выявляется совокупная антигенная характеристика, что обычно не позволяет однозначно установить группу крови донора спермы. Ошибкой является, если группа крови жертвы не учитывается и выявляемый общий антигенный профиль отождествляют с групповой принадлежностью спермы. Это приводит к завышению идентификационной значимости данных <1>.

--------------------------------

<1> Больше всего вариантов имеет место в случае, если группа крови жертвы по системе АВО - АВ (такая же антигенная характеристика выявляется и в "смешанных" следах): при этом групповая принадлежность спермы может быть любой. Если эксперт ошибочно сделает вывод о том, что сперма в следах произошла от лица с группой крови АВ, да еще усилит свой вывод указанием частоты встречаемости этой группы крови в популяции (8% среди европеоидов), то в случае, если по делу будет проходить обвиняемый с такой же группой крови, суд может использовать это в числе доказательств в пользу его виновности. На самом деле никакой информации в отношении групповой принадлежности донора спермы эти результаты не дали.
Интерпретация "смешанных" объектов представляет собой весьма сложную

задачу и в ДНК-анализе, ведь исходно часто не известен ни сам факт наличия

смеси, ни число лиц, ДНК которых содержится в объекте. "Смешанный" характер

профиля ДНК не всегда очевиден. Профиль ДНК одного лица имеет в каждом

локусе не более двух аллелей, поэтому если в локусе выявляется большее

количество пиков, это позволяет предположить наличие смеси. Однако

экстра-пики за счет артефактов могут выявляться и в индивидуальном профиле.

В то же время "смешанный" характер профиля может камуфлироваться наличием в

генотипах общих аллелей <1>.

--------------------------------

<1> Так, вероятность выявления при исследовании смеси ДНК двух

индивидуумов двухаллельного профиля в каждом из шести STR-локусов

-5

составляет 2,5 x 10 . См.: Gill P., Sparkes R., Kimpton C. Development of

guidelines to designate alleles using an STR multiplex system // Forensic

Science International. 1997. Vol. 89. P. 185 - 197.
Наибольшую проблему для исследования представляют смеси биологического материала одной и той же природы, например, крови двух или более лиц. Для определения профилей разных контрибьюторов может быть использована корреляция высоты пиков с количеством ДНК, что позволяет в ряде случаев отнести аллели за счет профилей ДНК определенных лиц. Однако, поскольку на высоту пика влияют и другие факторы помимо количества ДНК, это не всегда легко сделать. Сложности, например, могут возникнуть в случае аллельного дисбаланса. Успешно используются для интерпретации специально разработанные для анализа "смешанных" следов компьютерные программы.

Методика "дифференциального лизиса" позволяет отделить ДНК спермы от ДНК иной природы (крови, вагинальных выделений) и получить "чистые" профили соответствующей ДНК. Процедура обычно весьма эффективна, однако полностью разделить материал удается не всегда. Ошибки могут возникать, если игнорируется возможность того, что фракции, полученные после "дифференциального лизиса", могут иметь достаточно сложный состав и содержать ДНК разных лиц. Неверный результат может также быть обусловлен тем, что при интерпретации не учитывается возможность неодинаковой подверженности к деградации разных компонентов смеси, следствием чего может явиться преимущественная амплификация одних компонентов смеси по отношению к другим либо неодинаковая способность ДНК к амплификации по разным локусам. В смешанных объектах еще более сложно, чем в заведомо изолированных образцах, дифференцировать аллельные сигналы от сигналов, обусловленных артефактами. Все это может вести к ошибочным выводам о генотипах лиц, ДНК которых содержится в следах.

"Смешанный" характер профиля ДНК может быть обусловлен не только исходным присутствием в следах биологического материала разного происхождения, но и случайным загрязнением объекта чужеродной ДНК - контаминацией (contamination - англ. загрязнение). В случае, когда собственный профиль ДНК объекта не выявляется, контаминация может приводить к выявлению не присущего объекту профиля ДНК и служить причиной идентификационной ошибки.

Контаминация может произойти на различных этапах манипуляций с объектами, начиная с места происшествия, если при изъятии не соблюдаются меры предосторожности, предохраняющие объекты от загрязнения их ДНК изымающего лица или других объектов (использование резиновых перчаток, шапочек, масок, протирка инструментов спиртом после работы с каждым объектом и т.д.). Загрязнение также может произойти при помещении объектов в одну и ту же упаковку <1>; в морге при небрежном обращении с одеждой, снятой с трупа. В экспертной лаборатории контаминация может произойти при манипуляциях по время осмотра поступивших на исследование предметов и в особенности при анализе ДНК.

--------------------------------

<1> Иногда возможность контаминации следует уже из описания того, как упакованы объекты. Так, в одном из заключений было указано, что брюки обвиняемого, изъятые у него дома, были доставлены в лабораторию упакованными вместе с обнаруженными на месте происшествия предметами одежды жертвы, пропитанными ее кровью.
Предотвращение контаминации достигается строгим выполнением всех требований, предъявляемых к организации и проведению ПЦР-анализа. Особенно опасна контаминация амплифицированной ДНК, поэтому помещения, где с ней работают, должны быть отделены от зоны, где исследуется геномная ДНК. К контаминации приводят нарушение предписанных методикой правил зонирования помещений, неправильное устройство вентиляции, использование в разных зонах одних и тех же дозаторов, небрежная лабораторная работа и т.д. Индикатором контаминации является обнаружение профиля ДНК в специально предусмотренном отрицательном контроле - в так называемой пустой пробе, в которую заведомо не вносится ДНК, а также "смешанного", не присущего матрице профиля в положительном контроле. Такой результат свидетельствует о сбое в исследовании, поэтому результаты исследования всей панели образцов признаются недостоверными, и оно должно быть проведено повторно.

Одним из возможных причин контаминации в лаборатории является загрязнение исследуемого объекта генетическим материалом работавшего с ним сотрудника. Этот вариант наименее опасен, так как он не приводит к ошибочному обвинению проходящего по делу лица. Кроме того, он наиболее прост для выявления, поскольку персонал лаборатории тестирован, и доказать артефактное происхождение выявленного профиля ДНК не представляет сложностей.

В прессе сообщалось о проходившем во Флориде процессе по делу Кейси Энтони, обвинявшейся в убийстве своей 2-летней дочери Кейли. Скелетированные останки ребенка в декабре 2008 г. были обнаружены в лесном массиве недалеко от дома, где Кейли жила с матерью. Важным аргументом защиты являлось выявление на находившемся на черепе скотче профиля ДНК неизвестного лица. Выяснилось, однако, что это профиль ДНК лаборанта, работавшего с объектом <1>.

--------------------------------

<1> Hightower Kyle. Defense Focuses on DNA in Anthony Trial. Хаффингтон Пост. 16 июня 2011 г. // http:// www.huffingtonpost.com/ huff-wires/ 20110616/ us-casey-anthony-trial.
Большую опасность представляет контаминация объекта, относящегося к событию преступления, генетическим материалом сравнительного образца, так как в случае, если она не распознана, это может привести к ошибочной идентификации и, возможно, к судебной ошибке. Риск контаминации создается, если объекты с места происшествия и сравнительные образцы исследуются в одном и том же помещении одновременно, в особенности в одной и той же панели образцов. Недопустимо одновременное исследование объектов, содержащих малое количество ДНК (волосы, микроследы крови, выделений), и сравнительных образцов, содержащих большие количества ДНК. Они должны исследоваться в разных помещениях.

Также опасна для исхода дела контаминация следов, происхождение которых неизвестно, генетическим материалом объектов, очевидно относящихся к событию преступления. Так, если объекты, изъятые из дома подозреваемого, будут случайно загрязнены ДНК следов крови жертвы, изъятых с места убийства, результаты ДНК-анализа станут серьезным доводом в пользу его виновности.

Все большее значение для практики приобретает контаминация, которая ведет к получению ошибочного совпадения с базой генетических данных в случаях, когда до получения положительного ответа на запрос базы данных идентифицированное лицо подозреваемым не являлось (в англоязычной литературе такие совпадения носят название "cold hits" - "холодные совпадения"). Описано значительное число таких ошибок. Так, в одной из лабораторий объекты экспертизы, оставшиеся после изнасилования, произошедшего несколько лет назад, были контаминированы ДНК лица, ранее тестированного для базы данных. Было установлено, что в период, когда выполнялась эта экспертиза, образец ДНК данного лица использовался другим экспертом в другой панели образцов в качестве контрольного. От обвинения идентифицированного спасло то, что тогда, когда произошло изнасилование, он был еще совсем ребенком <1>.

--------------------------------

<1> См.: Thompson W.C. Tarnish on the "Gold Standard"...
Однако счастливый конец при контаминации бывает далеко не всегда. В 2002 г. в лаборатории Мичиганской полиции была проведена экспертиза по делу об убийстве Джейн Миксер, которое произошло в 1969 г. На одежде убитой была обнаружена ДНК двух мужчин, профили которых при проверке по базе данных совпали с профилями ДНК неких Гэри Лейтермана и Джона Руэлса. Они сразу стали подозреваемыми. Никакой связи ни между данными лицами и убитой <1>, ни между ними самими выявлено не было. Зато было выяснено, что образцы ДНК этих лиц, проходящих по совершенно другим делам, тестировались в лаборатории в тот же день, когда исследовались и следы по делу Миксер. Несмотря на такие явно настораживающие совпадения и очевидные противоречия в деле, в 2005 г. Лейтерман был осужден <2>.

--------------------------------

<1> Что касается Руэлса, то вообще выяснилось, что в то время, когда была убита Миксер, ему было всего четыре года и он жил с родителями в другом городе. Для объяснения того, каким образом кровь юного Руэлса могла оказаться на месте происшествия, была выдвинута версия о том, что он страдал носовыми кровотечениями и его кровь каким-то образом попала на Миксер.

<2> См.: Thompson W.C. The potential for error in Forensic DNA Testing (and How that complicates the use of DNA Databases for Criminal Identification). 2008. August 12 // http:// www.councilforresponsiblegenetics.org/ pageDocuments/ H4T5EOYUZI.pdf.
В последнее время в литературе появляются все новые свидетельства того, что контаминация - проблема не единичных экспертных исследований, такие случаи происходят регулярно, причем даже в лучших ДНК-лабораториях <1>. В случае если условия проведения исследования создают потенциальный риск контаминации, это может являться основанием для того, чтобы поставить под сомнение достоверность идентификации. Для этого необходимо тщательно изучить все этапы технологии, проследив, как именно проводилось исследование интересующих объектов, а также установить, были ли случаи контаминации в этой лаборатории раньше. Для получения необходимой информации может быть целесообразно помимо изучения материалов допросить персонал лаборатории. Собранная совокупность данных не всегда позволяет заключить, что объекты действительно были контаминированы, однако из них можно получить информацию о том, что есть реальные основания для того, чтобы считать, что это могло быть. В определенном контексте это может иметь большое значение для объяснения результатов ДНК-анализа. В судебной практике есть прецеденты, когда результаты такого анализа данных были учтены при вынесении приговора по уголовному делу. Приведем пример.

--------------------------------

<1> См.: Thompson W.C. Tarnish on the "Gold Standard".
В 1997 г. в Австралии при странных обстоятельствах исчез малолетний Джейдин Лески. Шесть месяцев спустя был обнаружен его труп с признаками насильственной смерти. Подозрение пало на знакомого матери, с которым был оставлен мальчик в день исчезновения, однако на испачканной кровью одежде погибшего была выявлена ДНК неизвестной женщины. Обвиняемый был оправдан. В 2003 г. было получено совпадение по 7 локусам с профилем ДНК из базы данных, принадлежавшим молодой женщине с нарушениями психики. Вероятность случайного совпадения составила 1 на 227 млн. Однако женщина жила за сотни миль от места преступления, в деревне, которую никогда не покидала. Это обстоятельство побудило провести тщательное изучение материалов, относящихся к исследованию ДНК. Было установлено, что ДНК этой женщины, проходившей в качестве потерпевшей по случаю изнасилования, исследовалась в той же лаборатории в то же самое время, что и одежда мальчика. Таким образом, появилась версия о контаминации, хотя сотрудники лаборатории категорически отрицали ее возможность.

Итак, контаминация или случайное совпадение? После типирования еще нескольких локусов, так, что в общей сложности их число составило 15, а вероятность случайного совпадения достигла 1 на 100 трлн., сомнений уже не осталось. В отсутствие установленной связи между обвиняемой и погибшим результаты ДНК-анализа, приведшие к совпадению с базой данных, были отнесены за счет контаминации объектов исследования в лаборатории. Это и было указано в приговоре по данному уголовному делу <1>. У.К. Томсон, участвовавший в данном деле в качестве независимого эксперта, указал, что он может документально подтвердить десятки случаев контаминации в других лабораториях, произошедшей при тех же условиях <2>. Очевидно, что в подобных случаях правильное решение вопроса возможно только при оценке различных иных доказательств по делу, а не только данных ДНК-анализа.

--------------------------------

<1> Inquest into the death of Jaidin Raymond Leskie. Coroner's case N 007/98. 2006. July 31 // http://www.bioforensics.com/articles/Leskie_decision.pdf.

<2> Thompson W.C. Victoria State Coroner's inquest into death of Jaidin Leskie...
Разновидностью контаминации считают также загрязнение объектов микрофлорой. В ДНК-анализе это не создает проблему для интерпретации, так как профиль ДНК микроорганизмов при использовании соответствующих идентификационных систем не детектируется. Однако при исследовании традиционных генетических маркеров эксперты сталкиваются с проблемой, связанной с выявлением в следах антигенов микрофлоры, искажающих результаты установления групповой принадлежности, в особенности при применении высокочувствительной реакции абсорбции-элюции (РАЭ). Такие искажения, не будучи предотвращены использованием необходимых методических подходов и пригодных для исследования таких объектов иммунореагентов, явились причиной экспертных ошибок, имевших трагические последствия для исхода целого ряда уголовных дел, в том числе получивших большой резонанс <1>. Наличие у микроорганизмов серологической активности обусловливает в ряде случаев кажущееся несовпадение антигенных характеристик крови и выделений одного и того же человека. Некоторые авторы, не учитывая природу этого явления, объясняли случаи такого несоответствия существованием так называемого "парадоксального выделительства", ошибочно полагая, что выделениям отдельных лиц могут быть свойственны антигены, не присутствующие в их крови. Безосновательность этого представления была доказана результатами многочисленных исследований отечественных и зарубежных авторов. Тем не менее заблуждения относительно не существующего в природе парадоксального выделительства время от времени вновь появляются в юридической литературе.

--------------------------------

<1> Хорошо известны последствия экспертных ошибок, допущенных в ставших известными делах ряда серийных убийц. Неправильное установление в следах групповой принадлежности спермы имело своим следствием ошибочный вывод об исключении возможности ее происхождения от лиц, от которых она в действительности произошла. Результаты экспертиз были основанием для снятия с этих лиц подозрений. Последствия этого известны. Так, в деле Чикатило ими стали осуждение не причастных к совершенным им преступлениям лиц; в деле Манджикова - бессмысленное тестирование десятков тысяч населения на предмет поиска лица с ошибочно установленной при первичной экспертизе группой крови и, вследствие потери времени, - нападение преступника на следующую жертву.
Объект может также содержать примесь гетерогенного биологического материала какого-либо животного. При антигенной дифференциации по системе АВО это может явиться причиной экспертной ошибки, так как животные содержат те же антигены, что и человек. Поэтому в случае, если примесь крови животного к крови человека окажется не диагностированной, группа крови человека может быть установлена неверно. В ДНК-анализе подобная проблема отсутствует, поскольку положительный результат ПЦР может быть получен лишь с ДНК человека <1>.

--------------------------------

<1> Для ПЦР применяются лишь специфичные для ДНК человека праймеры, не гибридизующиеся с ДНК иного происхождения.
Перечисленные трудности не исчерпывают всего спектра методических проблем, с которыми сталкиваются эксперты при исследовании объектов биологического происхождения. Следует подчеркнуть, что существование этих сложностей не означает их непреодолимость. Разработаны подходы к решению самых разных проблем, и в руках опытного, квалифицированного эксперта получаемые результаты достоверны. Речь идет лишь о том, что существуют проблемные моменты, которые, в отсутствие к ним должного внимания со стороны эксперта, могут привести к ошибкам. Эти "узкие места" экспертизы, оставляющие в определенных случаях место для субъективизма и разницы во мнениях, должны также стать предметом дальнейших исследований.
9.3. Ошибки вследствие мутаций
В идентификационных исследованиях важно учитывать возможность мутаций, при которых происходят изменения генетического материала. Это также может иметь значение для оценки результатов.

При генеративных мутациях (затрагивающих половые клетки) мутантный аллель передается последующим поколениям, присутствуя во всех типах их тканей. Такие мутации актуальны для экспертизы установления родства, в частности для экспертизы спорного отцовства. Согласно Приказу Минздравсоцразвития России N 346н <1> "для обоснованного вывода о безусловном исключении отцовства, материнства аллели ребенка, не свойственные ни одному из указанных родителей, должны быть зарегистрированы как минимум в двух несцепленных локусах" (п. 84.12.4) <2>. Однако опубликованы данные, свидетельствующие о возможности выявления мутаций не только в одном, но и в двух локусах, вследствие чего достоверное исключение отцовства констатируется, как правило, при исключении отцовства не менее чем по трем локусам, а исключение по двум локусам оценивается как сомнительный результат. В литературе приведены также статистические данные относительно частоты мутаций одновременно в трех локусах (1:4,5 млн.) <3>.

--------------------------------

<1> Приказ Минздравсоцразвития России от 12 мая 2010 г. N 346н "Об утверждении Порядка организации и производства судебно-медицинских экспертиз в государственных судебно-экспертных учреждениях Российской Федерации".

<2> Этот пункт без изменения перешел из утратившего силу Приказа Минздрава России от 24 апреля 2003 г. N 161 "Об утверждении Инструкции по организации и производству экспертных исследований в бюро судебно-медицинской экспертизы". Критический анализ данного положения был дан в статье: Перепечина И.О., Животовский Л.А. Оценка идентификационного значения генетических данных при судебно-медицинском установлении отцовства (материнства) // Сб. науч. трудов "Криминалистические средства и методы в раскрытии и расследовании преступлений". Ч. III. ЭКЦ МВД РФ. М., 2004. С. 23 - 26.

<3> Jacewicz R., Berent J., Dobosz T., Kowalczyk E. Non-exclusion paternity case with a triple genetic incompatibility // Int. Society of forensic genetics. 9 - 13 September. 2003. Bordeaux - Arcachon. D-32.
При соматических мутациях, не затрагивающих половые клетки, мутантный аллель другим поколениям не передается.

Мутации в STR-локусах носят различный характер, в зависимости от которого они могут влиять на STR-профиль (потенциально создавая этим риск ошибочной интерпретации), а могут не влиять. Обычно они представляют собой вставку или делецию (выпадение) целой повторяющейся единицы, что детектируется. При точковых мутациях события происходят на уровне нуклеотидного основания, некоторые из таких мутаций влияют на STR-профиль.

Вставка и делеция основания приводят к изменению длины региона с короткой повторяющейся последовательностью или амплифицируемого фланкирующего региона и поэтому влияют на STR-профиль. Мутация в виде замены основания (если только она не затрагивает праймер-связывающий регион) на длину последовательности ДНК, а следовательно, на STR-профиль, не влияет. Мутация в праймер-связывающей последовательности фланкирующего региона может влиять на результаты типирования: если вследствие мутации в этой области отжиг праймера станет невозможным, аллель амплифицироваться не будет, и это приведет к его "выпадению" (нуль-аллель); если же мутация лишь частично препятствует отжигу, снижая эффективность амплификации, это приведет к уменьшению интенсивности сигнала, но не к его полному исчезновению.

Точковые мутации могут приводить к дискордантности - расхождению в результатах генотипирования, полученных с использованием разных систем праймеров, например, в мультилокусных системах для STR-анализа разных производителей, обусловливая тем самым различия в результатах при использовании в разных экспертизах разных наборов реагентов <1>.

--------------------------------

<1> Орехов В.А., Поляков А.В., Никулин М.В. и др. Анализ полиморфизмов в окружении STR-маркеров: преодоление дискордантности результатов генотипирования. Доклад на VII Всероссийской научно-практической конференции с международным участием "Молекулярная диагностика - 2010". Москва, 25 ноября 2010 г.
Встречаются также такие аномалии, как дупликации (удвоения), которые могут происходить как на хромосомном, так и на генном уровнях. Некоторые из них могут детектироваться. Дупликация, несущая мутацию в коровом повторяющемся регионе STR-локуса, может влиять на число тандемных повторов, приводя к выявлению трехаллельного профиля с сигналами одинаковой интенсивности. При судебном ДНК-анализе зафиксированы десятки трехаллельных профилей в STR-локусах, многие из которых встретились в локусах TPOX, FGA, CF1PO. Если дупликация не несет мутацию, в гетерозиготном профиле будет наблюдаться только два аллеля <1>. В редких случаях дополнительные фрагменты ДНК могут быть обусловлены наличием у донора ДНК хромосомных аномалий, таких как хромосомные транслокации, трисомии и др. Из исключительно редких генетических явлений можно также упомянуть химеры, которые потенциально могут привести к получению профилей ДНК с избыточными аллельными вариантами. Иногда в кровяном русле дизиготных близнецов во внутриутробном периоде образуются сосудистые анастомозы, в результате чего происходит перенос от одного близнеца другому эритроцитов и эритропоэтических клеток. Благодаря состоянию иммунологической толерантности иммунологического конфликта не происходит. В подобных случаях индивидууму свойственны как бы две группы крови, два профиля ДНК <2>.

--------------------------------

<1> Li R. Forensic Biology. CRC Press, 2008. P. 299.

<2> Прокоп О., Гелер В. Группы крови человека. М., 1991; Castella V., Lesta M., Mangin P. One person with two DNA profiles: a (nother) case of mosaicism or chimerism. Int. J. Legal Med., 2009. V. 123. N. 5. P. 427 - 430.
Интерпретацию результатов анализа митохондриальной ДНК может усложнять явление так называемой гетероплазмии, под которой понимается наличие двух и более субпопуляций (типов) митохондриальных геномов в одной митохондрии, клетке, ткани, органе или у индивидуума; гетероплазмия проявляется наличием двух и более митотипов в одном и том же типе ткани либо разных митотипов в разных тканях индивидуума <1>. Причиной гетероплазмии являются мутации, уровень которых в гипервариабельных регионах (HV-I и HV-II) митохондриальной ДНК в 5 - 10 раз выше, чем в ядерной ДНК. Гетероплазмия может возникать как в момент оплодотворения, в гаметах, так и в течение жизни индивидуума в качестве соматической мутации. Разные ткани подвержены гетероплазмии по-разному; чаще всего она встречается в волосах. Правильная оценка выявляемых в последовательностях митохондриальной ДНК различий имеет большое значение для интерпретации экспертных данных. Например, выявление гетероплазмии в волосе, изъятом с места происшествия, при отсутствии ее в образце подозреваемого не может не создать проблему при оценке данных. При неправильной интерпретации гетероплазмия может быть причиной ошибочного исключения индивидуума как источника происхождения объекта. Однако, с другой стороны, если гетероплазмия присутствует одновременно и в экспертном объекте, и в представленном для сравнения образце, она может повысить идентификационную значимость полученных результатов.

--------------------------------

<1> Budowle B., Allard M.W., Wilson M.R., Chakraborty R. Forensic and mitochondrial DNA: application, debates and foundations // Annu. Rev. Genom. Hum. Genet., 2003. V. 4. P. 199.
9.4. Технические ошибки
Причиной неверных результатов может стать техническая ошибка из-за перепутывания объектов исследования вследствие их неправильной маркировки, внесения в пробирку ДНК другого лица, ошибок при внесении данных в компьютер. Такие ошибки обусловлены пресловутым "человеческим фактором". Автоматизация снижает риск технических ошибок пропорционально степени исключения ручного труда из процедуры, не сводя его, однако, к нулю, так как даже при практически полной роботизации ошибка может произойти на этапе исходной постановки проб. Перепутывание объектов может произойти еще до того, как объекты поступят в экспертную лабораторию - на этапе изъятия следов с места происшествия, получения сравнительных образцов. Практике такие случаи известны. Так, в зарубежной прессе сообщалось о перепутывании полицией образцов, взятых в связи с делом Совела, обвинявшегося в 11 убийствах (Кливленд, США) <1>.

--------------------------------

<1> DNA left untested in case linked to Ohio killings // Хаффингтон Пост 17 июня 2011 г.; http:// www.huffingtonpost.com/ huff-wires/ 20110617/ us-cleveland-bodies-found-rape.
С тем чтобы не пропустить техническую ошибку, в лаборатории должна быть налажена надежная система контроля за результатами исследования, причем внимание должно быть уделено не только правильности выполнения исследования, но и правильности его оформления. Минимизировать риск ошибки позволяет дублирование исследования, особенно если это осуществляется разными экспертами.

В 2002 г. было сообщено о технической ошибке, которая произошла в лаборатории полиции Лас Вегаса <1>. У Лазаро Сотолюссона и Джозефа Копполы, находившихся в одной камере, были взяты на анализ образцы ДНК. Исследование было проведено правильно, однако при внесении полученных профилей ДНК в компьютер лаборант перепутал фамилии, указав профиль ДНК Сотолюссона под фамилией Копполы, а профиль ДНК Коппола - под фамилией Сотолюссона. При проведении компьютерного поиска на предмет совпадения с базой данных по нераскрытым преступлениям профиль, ошибочно обозначенный как профиль ДНК Сотолюссона, совпал с профилем ДНК, полученным в связи с двумя нераскрытыми половыми преступлениями в отношении несовершеннолетних, совершенными в 1998 и 1999 гг. Вероятность случайного совпадения составила 1:600 млрд.

--------------------------------

<1> Puit G. Op. cit.
Ошибку удалось выявить только благодаря двум обстоятельствам. Во-первых, адвокат, несмотря на отсутствие, казалось бы, оснований, сумел добиться назначения независимой экспертизы и, во-вторых, независимому эксперту была предоставлена возможность изучения всей документации лаборатории по данному случаю, в том числе электронных файлов. При проверке эксперт обнаружил, что профиль ДНК Сотолюссона, полученный при тестировании его образца, отличается от того профиля, который был внесен под его фамилией в базу данных для поиска совпадений с профилями ДНК по нераскрытым преступлениям. После повторного взятия образцов у Сотолюссона и Копполы и исследования их в той же лаборатории ошибка была подтверждена и обвинение с Сотолюссона было снято. Если бы не это, он, скорее всего, провел бы остаток своей жизни в тюрьме. Это представляется тем более вероятным, что одна из потерпевших опознала Сотолюссона как напавшего на нее. Это не удивительно, если учесть, что согласно результатам программы "Невиновность" в 75% случаев судебных ошибок, приведших к осуждению невиновных, имело место ошибочное опознание <1>.

--------------------------------

<1> http://www.innocenceproject.org
9.5. Ошибочное определение идентификационной значимости

выявленной совокупности признаков
Оценка идентификационной значимости выявленных генетических признаков проводится на основе вероятностных расчетов. Алгоритмы расчетов детально разработаны, однако при практическом выполнении вычислений ошибки встречаются. Обычно они обусловлены неверным выбором экспертом модели вычислений, касаясь наиболее сложных случаев - расчетов в случае "смешанных" следов, при прохождении по делу кровных родственников и т.д. В подобных ситуациях искомая вероятностная величина может очень существенно отличаться от той, которая получается в случае, если расчеты ведутся по обычным формулам. Иногда встречается логическая ошибка, связанная с введением в расчеты информации о половой принадлежности. При исследовании следов спермы пол идентифицируемого лица априори известен. Поэтому если в выводах указывается, что рассчитанная величина случайного совпадения признаков означает, с какой вероятностью признаки, согласующиеся с профилем исследуемого объекта, встречаются среди
1   ...   18   19   20   21   22   23   24   25   ...   40


написать администратору сайта