Главная страница
Навигация по странице:

  • Выполнила: Цыган Е.А. Проверила: Пичугина О.С. Любня 2015 АКСИОМАТИЧЕСКИЙ МЕТОД

  • Д. Гильберта

  • Геометрия Лобачевского (гиперболическая геометрия

  • Евклидова геометрия

  • Сущность аксиоматического метода. Сущность аксиоматического метода


    Скачать 25.4 Kb.
    НазваниеСущность аксиоматического метода
    Дата20.06.2018
    Размер25.4 Kb.
    Формат файлаdocx
    Имя файлаСущность аксиоматического метода.docx
    ТипРеферат
    #47390

    ГБПОУ МО «ППТОТ»

    Реферат по математике

    Тема: «Сущность аксиоматического метода»

    Студента 1 курса

    Группы Ст.-15.26д.

    Выполнила: Цыган Е.А.

    Проверила: Пичугина О.С.

    Любня 2015

    АКСИОМАТИЧЕСКИЙ МЕТОД –метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями. Или же способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории. 

    Общее понимание аксиоматического метода в нескольких строках. «Я уверен: все, что может быть объектом научного исследования в целом, и постольку, поскольку оно созревает для оформления в теорию, прибегает к аксиоматическому методу и через него косвенно к математике. Обращаясь вперед, по направлению к более глубокому пласту аксиом, в дополнительном понимании мы достигаем более глубокого проникновения в сущность научного мышления и еще более ясно осознаем единство нашего знания. В свидетельствах аксиоматического метода, как представляется, математика призвана играть лидирующую роль в науке в целом» (Гильберт Д. Избранные труды. Т.2. Анализ. Физика. Проблемы. Personalia. – М. , 1998. – С. 381)».

    Аксиоматизм как черта знания означает логическую доказательность, дедуктивность, отсутствие однозначной привязки основоположений теорий к некоему наперед заданному толкованию. Именно аксиоматическая организация позволяет с максимальной эффективностью использовать в построении теории аппарат логики, добиваться наибольшей реализации научных идеалов точности, строгости. Основания для применения аксиоматического метода могут быть разными, что обычно приводит к различению аксиом не только по их формулировкам, но и по их методологическим (прагматическим) статусам. Например, аксиома может иметь статус утверждения, или статус предположения, или статус лингвистического соглашения о желаемом употреблении терминов. Иногда это различие в статусах отражается в названиях аксиом (в современных аксиоматиках для эмпирических теорий среди всех аксиом выделяют часто так называемые постулаты значения, выражающие лингвистические соглашения, а древние греки делили геометрические аксиомы на общие понятия и постулаты, полагая, что первые описывают, вторые строят). Вообще говоря, учет статусов аксиом обязателен, так как можно, например, изменить содержание аксиоматической теории,не изменив при этом ни формулировку, ни семантику аксиом, а поменяв лишь их статус, объявив, скажем, одну из них новым постулатом значения. Аксиоматический метод был впервые продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы, постулата и определения рассматривались уже Аристотелем. В частности, к нему восходит толкование аксиом как необходимых общих начал доказательства. Понимание аксиом как истин самоочевидных сложилось позднее, став основным с появлением школьной логики Пор-Рояля,для авторов которой очевидность означает особую способность души осознавать некоторые истины непосредственно (в чистом созерцании, или интуиции). Между прочим, убеждение Канта в априорном синтетическом характере геометрии Евклида зависит от этой традиции не считать аксиомы лингвистическими соглашениями или предположениями. Открытие неевклидовой геометрии (Гаусс, Лобачевский, Бойяи); появление в абстрактной алгебре новых числовых систем, причем сразу целых их семейств (например, р-адические числа); появление переменных структур вроде групп; наконец, обсуждение вопросов типа «какая геометрия истинна?» – все это способствовало осознанию двух новых, по сравнению с античным, статусов аксиом: аксиом как описаний (классов возможных универсумов рассуждений) и аксиом как предположений, а не самоочевидных утверждений. Так сформировались основы современного понимания аксиоматического метода. Это развитие аксиоматического метода становится особенно наглядным при сопоставлении «Начал» Евклида с «Основаниями геометрии» Д. Гильберта – новой аксиоматики геометрии, базирующейся на высших достижениях математики 19 в.

    К концу того же века Дж. Пеанодал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний,а П. Бернайс – логики предикатовНыне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. В последние десятилетия по мере развития моделей теорииаксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.

    При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

    - некоторые понятия теории выбираются в качестве основных и принимаются без определения

    - каждому понятию теории, которое не содержится в списке основных, дается определение; в нем разъясняется смысл понятия с помощью основных и предшествующих данному понятий

    - формулируются аксиомы – предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий

    - каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

     

    Если построение теории осуществляется аксиоматическим методом, а именно, по названным выше правилам, то говорят, что теория построена дедуктивно.

    При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

    Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения

    Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

    Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.

    При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

    Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в данном курсе будет не всегда строгим – некоторые доказательства мы опускаем в силу большой сложности, но каждый такой случай будем оговаривать.

    Еще один пример аксиоматического построения теории – геометрия Евклида и геометрия Лобачевского.

    Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.

    Евклидова геометрия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).

    Проблема полной аксиоматизации элементарной геометрии — одна из проблем геометрии, возникшая в Древней Греции в связи с критикой этой первой попытки построить полную систему аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.

    В «Началах» Евклида была дана следующая аксиоматика:

    1. От всякой точки до всякой точки можно провести прямую.

    2. Ограниченную прямую можно непрерывно продолжать по прямой.

    3. Из всякого центра всяким раствором может быть описан круг.

    4. Все прямые углы равны между собой.

    5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

    Исследование системы аксиом Евклида во второй половине XIX века показало её неполноту.

    В 1899 году Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии. Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта, а именно, Пашем, Шуром, Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным.

    Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается период развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти - в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

    Величайший философ античности Платон (428-348 г.г. до н.э.) создатель Академии, по-видимому, первым отчётливо поставил задачу построения всего научного знания вообще и геометрии в частности дедуктивным образом. Трактаты и учебники по геометрии появились ещё до Платона - известны руководства Гиппократа Хиосского, Демокрита, Февдия. но лишь Платон потребовал, чтобы во главу всякой отрасли знания были поставлены понятия и положения, из которых всё остальные, что к этой отрасли относятся должно вытекать кА их следствия. Но эта постановка у Платона всё же весьма расплывчата и контуры её лишь угадываются из всего его учения, построенного на полумистической базе.

    Гениальный ученик Платона великий Аристотель (384-322 г.г. до н.э.), перешагнул через мистические догмы Платона, выявил его рациональные требования научного обоснования всякого знания всякой научной деятельности. Он охватил почти все достигнутые для его времени отрасли знания, стал основоположником научного метода и многих наук. Наука, по Аристотелю, представляет собой последовательность предложений, относящихся к некоторой области. Среди этих предложений имеются основные, которые настолько очевидны, что не требуют доказательств. Это - аксиомы. Остальные предложения должны быть выведены из них. Это - теоремы. Эта научная доктрина Аристотеля была принята как руководство к действию, прежде всего, математики. И когда примерно полстолетия спустя появился гениальный труд Евклида «Начала», то в его структуре явно просматривалась печать схемы Аристотеля.


    написать администратору сайта