Главная страница
Навигация по странице:

  • 1. Литературный обзор и обоснование темы

  • Чугунный коленчатый вал двигателя ЗМЗ-53А Рис. 1.1

  • Технические условия на ремонт.

  • Дефекты чугунного коленчатого вала Рис. 1.2 Современные технологии восстановления чугунных коленчатых валов.

  • Шлифовка под ремонтные размеры.

  • Вибродуговая наплавка в жидкости.

  • Вибродуговая наплавка в водокислородной среде

  • Однослойная наплавка под флюсом.

  • Двухслойная наплавка проволокой Св-08 под легирующим слоем флюса.

  • Двухслойная наплавка порошковой проволокой.

  • Наплавка в среде углекислого газа.

  • Плазменная металлизация

  • Лазерный способ восстановления[10].

  • Наплавка под легирующим флюсом по оболочке [3].

  • Сущность способа восстановления чугунного коленчатого вала с применением защитных металлических оболочек

  • Схема наплавки под флюсом по оболочке. Рис. 1.6

  • Зависимость глубины проплавления основного металла от тол­щины оболочки. Рис. 1.7 Роль оболочки в устранении пор и трещин.

  • Технология восстановления чугунных коленчатых валов двигателей змз53А


    Скачать 1.16 Mb.
    НазваниеТехнология восстановления чугунных коленчатых валов двигателей змз53А
    Дата19.06.2021
    Размер1.16 Mb.
    Формат файлаdoc
    Имя файла000f8014-899fc62d.doc
    ТипДиплом
    #219194
    страница1 из 10
      1   2   3   4   5   6   7   8   9   10

    Дипломный проект

    Тема: Технология восстановления чугунных коленчатых валов двигателей ЗМЗ-53А

    Введение.

    В современном машиностроении применяются различные конструкционные материалы. Однако и до настоящего времени чугун является одним из основных конструкционных материалов. Например, вес чугунных отливок составляет до 50% веса машин. Это обусловливается простотой и относительной дешевизной изготовления чугунных деталей, хорошими литейными свойствами чугуна, его высокой износостойкостью, малой чувствительностью к концентраторам напряжений, способностью гасить вибрацию и т. д.

    Одной из актуальных задач стоящих перед организациями, эксплуатирующих автомобильную и автотракторную технику, является продление срока службы отработавших деталей, в том числе и чугунных. Сварка и наплавка чугуна широко применяется при ремонте вышедшего из строя различного оборудования. Однако она связана со значительными трудностями. Это связано с тем, что металл шва и околошовной зоны очень склонен к образованию твердых непластичных структур (ледебурита, мартенсита) и трещин вследствие больших скоростей охлаждения при сварке и наплавке, низкой прочности чугуна и почти полного отсутствия пластичности. Это осложняет решение многих вопросов, связанных с разработкой сварочных материалов (электродов, проволоки, флюсов и др.) для сварки чугуна.

    Горьковский автомобильный завод широко применяет в двигателях своих автомобилей детали из чугуна. Одной из них является коленчатый вал.

    Целью дипломного проекта является разработка технологического процесса восстановления чугунных коленчатых валов двигателя ЗМЗ – 53А позволяющего избежать выше перечисленных недостатков с возможностью применения в небольших ремонтных подразделениях МПС РФ.

    Большую работу по изучению процессов, протекающих при сварке и наплавке чугуна, провели исследователи: Доценко Г. Н., Доценко Н. И., Луппиан Г. Э. и др. Работы этих исследователей использованы в дипломном проекте.
    1. Литературный обзор и обоснование темы

    дипломного проекта.


      1. Описание изделия и технические

    условия на ремонт чугунного коленчатого вала.

    Чугунные коленчатые валы в автомобильных двигателях стали применять с 1960 года [3]. Высокопрочные чугуны по ГОСТ 7293-85 делятся на два класса: перлитные (ВЧ 45-0; ВЧ 50-1,5; ВЧ60-2) и ферритные (ВЧ 40-0; ВЧ 40-6). Большое применение нашли чугуны перлитного класса благодаря высокой прочности и износостойкости.

    Чугунный коленчатый вал двигателя ЗМЗ-53А

    Рис. 1.1
    В табл. 1.1 приведены сведения о прочностных свойствах высокопрочного, серого, модифицированного, ковкого чугунов и стали 45 [1].


    Из табл. 1.1. видно, что основные механические свойства перлитного высокопрочного чугуна примерно такие же, как и у стали 45 и значительно выше, чем у других чугунов. При этом себестоимость отливок из высокопрочного чугуна в 2-2,5 раза ниже по сравнению с себестоимостью отливок из ковкого чугуна и поковок стали 45 [3].

    Усталостная прочность.

    Применение высокопрочного чугуна взамен стали 45, для изготовления коленчатых валов стало возможным благодаря его высокой усталостной прочности. Соотношение по усталостной прочности для стальных и чугунных образцов гладких и коленчатых валов одинаковой формы представлены в табл. 1.2 [2].

    По данным табл. 1.2. у образцов гладких валов, изготовленных из высокопрочного чугуна, предел усталостной прочности на 18% меньше, чем у образцов изготовленных из стали 45; у коленчатых валов, изготовленных из тех же металлов, эта разница равна всего 4%. Объясняется это тем, что усталостные трещины вызывающие разрушения чугунных коленчатых валов, возникают в местах концентрации напряжений на галтелях, а высокопрочный чугун сохраняет присущую всем чугунам малую чувствительность к концентрации напряжений.
    Износостойкость.

    Высокую износостойкость высокопрочного чугуна с перлитной основой, не уступающую закаленной стали 45, большинство исследователей [4] объясняют наличием на его поверхности вскрытых графитовых включений, которые служат смазкой, а освободившиеся полости являются накопителями дополнительной смазки, необходимой при пуске и остановке двигателя.

    При сравнении стальных и чугунных коленчатых валов в опубликованных работах [5,7] указывается, что при твердости стальных шеек HRC 56 их износостойкость равна износостойкости шеек чугунного коленчатого вала, при твердости шеек менее HRC 56 – меньше и при твердости более HRC 56 – больше износостойкости шеек чугунного коленчатого вала.

    Технические условия на ремонт.

    1. У коленчатых валов, поступающих на сборку, масляные каналы и грязеуловители должны быть тщательно очищены от шлама.

    2. Шатунные шейки должны иметь диаметр – 60,00-0,013 мм.

    Коренные – 70,00-0,013 мм.

    1. Овальность и конусность шеек коленчатого вала не должны превышать 0,01 мм.

    2. Чистота поверхности шеек должна соответствовать 5 квалитету Ra 0,2-0,4

    3. Длина передней коренной шейки должна быть в пределах 30,45-30,90 мм.

    Длина шатунной шейки 52,0-52,2 мм.

    1. Радиусы галтелей шатунных шеек должны быть в пределах 1,2-2,0 мм, коренных 1,2-2,5 мм.

    2. При вращении вала, установленного в призмы на крайние коренные шейки, биение не должно превышать:

    а) для средней коренной шейки – 0,02 мм.

    б) для шейки под распределительную шестерню – 0,03 мм.

    в) для шейки под ступицу шкива вентилятора – 0,04 мм.

    г) для шейки под задний сальник – 0,04 мм.

    д) фланца по торцу – 0,04 мм.

    1. Не параллельность осей шатунных и коренных шеек – не более 0,012 мм на длине каждой шейки.




      1. Дефекты и неисправности чугунного коленчатого вала


    Коленчатый вал является высоконагруженной деталью двигателя. В процессе эксплуатации двигатель машины подвержен различным нагрузкам, в том числе и неблагоприятным, это пуск двигателя в холодных условиях, не качественное смазочное масло, работа в запыленных условиях и т. д.

    Вследствие этих факторов трущиеся части коленчатого вала подвергаются повышенному износу, что в свою очередь приводит к появлению на этих поверхностях надиров, сколов, микротрещин, раковин показанных на Рис. 1.2., которые могут привести к поломке коленчатого вала и выходу из строя всего двигателя.

    Дефекты чугунного коленчатого вала

    Рис. 1.2

      1. Современные технологии восстановления

    чугунных коленчатых валов.
    В настоящее время чугунные коленчатые валы используются в двигателях автомобилей горьковского автомобильного завода, марки автомобилей ГАЗ-53А, ГАЗ-66, “Волга”, “Газель”. В некоторых автохозяйствах парк этих машин составляет до 80% от всего количества машин. Перестройка народного хозяйства и структурные изменения в нашей стране привели к разукрупнению автохозяйств, появлению мелких парков машин со смешанной формой собственности. Одной из задач, вставшей перед этими автохозяйствами, становится поддержание машин в рабочем состоянии при ограниченных финансовых ресурсах. По этому процесс восстановления изношенных деталей является на сегодняшний день актуальной задачей.

    Существует несколько технологий восстановления чугунных коленчатых валов [3]:

    1. Шлифовка под ремонтные размеры.

    Один из часто применяемых способов восстановления работоспособности коленчатых валов. Преимущества этого способа в его технологической простоте. Из оборудования требуется наличие кругло шлифовального станка и типовой оснастки к нему. Но у этого способа имеется и ряд недостатков. Потеря взаимозаменяемости деталей, потребность в деталях (вкладыши) с ремонтными размерами, наличие складских площадей под них.

    1. Вибродуговая наплавка в жидкости.

    При этом способе качество наплавленного металла зависит от многих факторов и резко ухудшается при изменении режимов наплавки и химического состава электродной проволоки. Поэтому даже при хорошо отлаженном процессе восстановления на шейках чугунных коленчатых валов часто встречаются поры и трещины. Количество пор увеличивается по глубине слоя, поэтому восстановленные чугунные коленчатые валы шлифуют лишь до третьего ремонтного размера, а затем выбраковывают. Усталостная прочность чугунных коленчатых валов, восстановленных вибродуговой наплавкой в жидкости, снижается на 35-40% [6]. Однако благодаря двукратному запасу прочности в эксплуатации наблюдается незначительное количество их поломок. Но применение этого способа наплавки для восстановления чугунных коленчатых валов двигателей грузовых автомобилей из-за значительного снижения усталостной прочности становиться не приемлемым.

    1. Вибродуговая наплавка в водокислородной среде [9].

    При этом способе восстановления наплавленный металл имеет структуру троостита, переходящую в сорбитообразный перлит с твердостью слоя HRC 42-48. Такой металл по износостойкости уступает высокопрочному чугуну, тем не менее, коленчатые валы восстановленные этим способом, обеспечивают срок службы двигателей соответствующий пробегу автомобиля 50-60 тыс. км. Сведений об усталостной прочности чугунных коленчатых валов, восстановленных наплавкой в водокислородной среде, не имеется. В целом эксплуатационные свойства таких валов изучены не достаточно, но из-за низкой в сравнении с высокопрочным чугуном износостойкости наплавленного металла этот способ наплавки не может быть рекомендован к повсеместному использованию.

    1. Однослойная наплавка под флюсом.

    Этот способ наплавки исследовался в НИИАТе и КАЗНИПИАТе [3]. Для наплавки применяли проволоку разных марок, в том числе пружинную 2 класса ГОСТ 1071-81, ОВС, НП-30ХГСА, Св-08, Св-10Х13, Св-12ГС ГОСТ 792-67 и другие. Наплавку производили под флюсами АН-348А, ОСЦ-45, АН-15, АН-20 ГОСТ 9087-81 без примешивания и с примешиванием к флюсу графита, феррохрома, ферромарганца, ферромолибдена, алюминиевого порошка и других компонентов для получения наплавленного металла мартенситной структуры с твердостью HCR 56-62 без пор и трещин. Наплавку производили при разном шаге, прямой и обратной полярности, разных напряжений дуги и индуктивности сварочной цепи, скорости подачи электродной проволоки и вращения детали. Все разновидности однослойной наплавки под флюсом не дали положительных результатов. Наплавленный металл имел неоднородную структуру и твердость, содержал поры, трещины и шлаковые включения.

    1. Двухслойная наплавка проволокой Св-08 под легирующим слоем флюса.

    Этот способ наплавки разработан в НИИАТе [3]. Лучшие результаты из многочисленных вариантов двухслойной наплавки получаются при использовании малоуглеродистой проволоки Св-08 диаметром 1,6 мм и легирующего флюса АН-348А (2,5 части графита, 2 части феррохрома №6 и 0,25 частей жидкого стекла). Металл первого слоя имеет аустенитное строение и твердость HRC 35-38. Второй слой имеет мартенситное строение и твердость HRC 56-62 и содержит небольшое количество пор. Недостатком этого способа наплавки является образование большого количества трещин в наплавленном слое, вызывающих повышенный износ сопряженных вкладышей. Усталостная прочность чугунных коленчатых валов двигателей ЗМЗ 53-А, восстановленных двухслойной наплавкой под легирующим флюсом, снижается на 26- 28% т.е. меньше, чем при вибродуговой наплавке в жидкости. Наличие на поверхности шеек большого количества трещин не позволяет рекомендовать этот способ для широкого применения.

    1. Двухслойная наплавка порошковой проволокой.

    Схема процесса сварки порошковой проволокой.

    Рис. 1.3

    Этот способ разработан в Казахском научно-исследовательском институте автомобильного транспорта в 1966 году [3]. Наплавленный металл второго слоя имеет структуру мартенсита и твердость HRC 56-60. Существенным недостатком этого способа наплавки является образование пор, раковин и трещин в наплавленном слое. Износостойкость наплавленных шеек находится на уровне не наплавленных. Усталостная прочность восстановленных чугунных коленчатых валов снижается на 44%. В связи с выше перечисленными недостатками этот способ восстановления чугунных коленчатых валов рекомендовать нельзя.

    1. Наплавка в среде углекислого газа.

    Схема наплавки в среде углекислого газа.

    Рис. 1.4

    Способ наплавки разработан в НИИАТе [3]. Шейки чугунных коленчатых валов наплавлялись проволокой разных марок, в том числе Нп-2Х13, ОВС, Св-12ГС, Нп-30ХГСА, Св-08 и другими. Во всех случаях структура наплавленного металла была неудовлетворительной, в слое имелись поры и трещины. Наименьшее количество дефектов на поверхности шеек получается при наплавке проволокой Нп-2Х13, наплавленный металл при этом имеет структуру аустенита с карбидной сеткой и неравномерную по длине твердость, колеблющуюся от HRC 51-60. Износ шеек чугунных коленчатых валов, наплавленных в углекислом газе проволокой Нп-2Х13, был больше не наплавленных шеек. Усталостная прочность при этом способе снижается на 45-50%. Из-за указанных недостатков такую наплавку применять нецелесообразно.

    1. Плазменная металлизация [10].

    Схема плазменного напыления.

    Рис.1.5

    Среди новых технологических процессов большой интерес для процесса восстановления деталей автомобилей представляет способы нанесения металлопокрытий с использованием плазменной струи в качестве источника тепловой энергии. Наиболее перспективным способом восстановления деталей нанесением износостойких металлопокрытий является плазменное напыление с последующим оплавлением покрытия. При этом в металле оплавленного покрытия доля основного металла минимальна. Покрытие обладает высокой износостойкостью, без пор и трещин. Процесс является высокопроизводительным. Недостатком этого способа является высокие начальные капиталовложения в оборудование. В нынешних условия при отсутствии оборотных средств у предприятий этот недостаток не позволяет рекомендовать способ к повсеместному использованию.

    9. Лазерный способ восстановления[10].

    Этот способ не может быть рекомендован к использованию на данном этапе в силу высокой стоимости оборудования и высокой требовательности к обслуживающему персоналу и культуре производства.
    10. Наплавка под легирующим флюсом по оболочке [3].

    Этот способ восстановления чугунных коленчатых валов разработан в НИИАТе и позволяет получить наплавленный металл без пор и трещин при более высокой, по сравнению с другими способами, усталостной прочности восстановленных чугунных коленчатых валов. Достоинством этого способа является отсутствие пор и трещин, высокие прочностные характеристики и простое, доступное по цене, оборудование.

    Сущность способа восстановления чугунного коленчатого вала с применением защитных металлических оболочек:

    Сущность способа заключается в следующем. Деталь обвертывают, металлической оболочкой из листовой стали, плотно прижимают оболочку к поверхности детали с помощью специального приспособления и сваркой в среде углекислого газа прихватывают ее в стыке. После удаления приспособ­ления производят автоматическую наплавку детали под флюсом по металли­ческой оболочке непосредственно.

    Схема наплавки под флюсом по оболочке.

    Рис. 1.6

    Известно [12], что для устранения трещин в наплавленном металле необходимо уменьшить в нем содержание углерода, кремния, марганца, серы и фосфора. Поскольку высокопрочный чугун содержит значительное количе­ство этих элементов, при экспериментах применяли оболочку из стали 08 и проволоку Св-08, содержащие их в небольшом количестве.

    При наплавке под флюсами АН-348А, ОСЦ-45, АН-15, АН-20 лучшее формирование слоя и меньшее количество дефектов получилось при исполь­зовании флюса АН-348А. С увеличением толщины [3] оболочки глубина проплавления высокопрочного чугуна уменьшается (Рис.1.6), соответственно уменьшается поступление в наплавленный металл углерода, кремния, мар­ганца и других элементов. Поэтому для получения наплавленного металла мартенситной структуры с твердостью HRC 56-62 во флюс добавляли графит и феррохром, обеспечивая содержание в наплавленном металле углерода 0,6-0,8% и требуемое количество хрома.

    При толщине оболочки 0,8 мм трещины и поры в наплавленном ме­талле отсутствовали, в то время как при обычных способах наплавки высо­копрочного чугуна при содержании углерода 0,6-0,8% трещин и пор избе­жать не удается.

    Зависимость глубины проплавления основного металла

    от тол­щины оболочки.

    Рис. 1.7

    Роль оболочки в устранении пор и трещин.

    С увеличением толщины оболочки уменьшается глубина проплавле­ния чу­гуна и соответственно количество образующейся окиси углерода, вы­зываю­щей образование пор. При толщине оболочки 0,8 мм и более неболь­шое ко­личество окиси углерода успевает выделиться из расплавленного ме­талла и пор в нем не наблюдается. Устранению трещин при наплавке по обо­лочке способствует два фактора: уменьшение поступления в наплавленный слой кремния, марганца, магния и уменьшение величины и скорости нарас­тания растягивающих напряжений в наплавленном валике в период его кри­сталли­зации благодаря уменьшению сил сопротивления усадок валика за счет пе­ремещения или пластической деформации оболочки. Доказано [13], что обра­зование горячих трещин происходит в период нахождения расплава в твердожидком состоянии при определенной величине и скорости нараста­ния внут­ренних напряжений.
      1   2   3   4   5   6   7   8   9   10


    написать администратору сайта