11. Тензодатчики. Тема 1
Скачать 263.59 Kb.
|
Учебная дисциплина: Электрическое и электромеханическое оборудование Раздел 8: ЭЛЕМЕНТЫ АВТОМАТИКИ Тема: 1. Основные понятия и определения автоматики Тема: ТензодатчикиЦель: 1. Ознакомиться с назначением, конструктивным исполнением, областью применения тензодатчиков.2. Получить общие сведения о возможностях применения, характеристиках, особенностях датчиков. План урока 1. Ознакомиться с представленным материалом. 2. Запомнить основные понятия, определения. 4. Ответить на контрольные вопросы записав ответы в тетрадь. 5. Знать изложенный материал. 6. Подготовиться к выполнению опросной работы. КОНТРОЛЬНЫЕ ВОПРОСЫ и задания Представить определение, область назначения. Перечислить и описать основные конструкции, проиллюстрировав рисунками. Достоинства и недостатки тензодатчиков. СПИСОК ЛИТЕРАТУРЫ И ИНТЕРНЕТ ИСТОЧНИКОВ 1. Свободный доступ в сети интернет по запросу командной строки «Тензодатчики», другие вопросы по теме рассмотренного материала. Требования к выполнению домашнего задания 1.Работа выполняется в рабочей тетради, разборчивым рукописным текстом, написанным в каждой строке, направляется преподавателю в сканированном или фотографическом виде в формате файла pdf на электронную почту GEM-191ivanov@yandex.ru, во время дистанционного обучения. Предъявляется лично при очном обучении или при проведении консультационных занятий. 2.При выполнении задания вопрос или задание, ровно, как и условие задачи, переписывается. 3.Выбор варианта задания: полно задание. 4.Отправляемый файл должен иметь имя, которое содержит: шифр группы (ГЭМ-191), наименование дисциплины (электрическое и электромеханическое оборудование - ЭМО), фамилию с инициалами, номер темы занятия. Пример: ГЭМ-191, ЭМО, Петров П.П., Урок.1. 5.Работа оценивается 1 оценкой – за выполненное задание, соответствие - полное. Повышающим балом служит использование в конспекте не оговариваемых схемных и иллюстрационных изображений. 6.При возможном отсутствии материала для ответа, необходимо воспользоваться литературой или интернет ресурсами по запросу. 7.Содержание ответов должно быть максимально кратким, но емким. 8.Графические изображения и рисунки, выполняются с использованием учебных принадлежностей. 9.При возникновении вопроса, допускается обращение к преподавателю по электронной почте, при проведении консультации (не влияет на оценку). ОБЩИЕ СВЕДЕНИЯ Тензометрический измерительный преобразователь – параметрический резистивный преобразователь, который преобразует деформацию твердого тела, вызванную приложенным к нему механическим напряжением, в электрический сигнал. Резистивный тензодатчик представляет собой основание с закрепленным на нем чувствительным элементом. Принцип измерения деформаций с помощью тензометрического преобразователя состоит в том, что при деформации изменяется активное сопротивление тензорезистора. Эффект изменения удельного сопротивления металлического проводника под действием всестороннего сжатия (гидростатического давления) был обнаружен в 1856 году лордом Кельвином и в 1881 году О.Д.Хвольсоном. В современном виде тензометрический измерительный преобразователь конструктивно представляет собой тензорезистор, чувствительный элемент которого выполнен из тензочувствительного материала (проволоки, фольги и др.), закрепленный с помощью связующего (клея, цемента) на исследуемой детали (Рисунок 1). Для присоединения чувствительного элемента в электрическую цепь в тензорезисторе имеются выводные проводники. Некоторые конструкции тензорезисторов для удобства установки имеют подложку, расположенную между чувствительным элементом и исследуемой деталью, а также защитный элемент, расположенный поверх чувствительного элемента. При всем многообразии задач, решаемых с помощью тензометрических измерительных преобразователей, можно выделить две основные области их использования: - исследования физических свойств материалов, деформаций и напряжений в деталях и конструкциях; - применение тензодатчиков для измерения механических величин, преобразуемых в деформацию упругого элемента. Рис.1. Схема тензопреобразователя: 1- чувствительный элемент; 2- связующее; 3- подложка; 4- исследуемая деталь; 5- защитный элемент; 6- узел пайки (сварки); 7- выводные проводники Для первого случая характерно значительное число точек тензометрирования, широкие диапазоны изменения параметров окружающей среды, а также невозможность градуировки измерительных каналов. В данном случае погрешность измерения составляет 2-10%. Во втором случае датчики градуируются по измеряемой величине и погрешности измерений лежат в диапазоне 0,5-0,05%. Наиболее ярким примером использования тензометров являются весы. Тензометрическими датчиками оснащены весы большинства российских и зарубежных производителей весов. Весы на тензодатчиках применяются в различных отраслях промышленности: цветная и черная металлургии, химическая, строительная, пищевая и другие отрасли. П ринцип действия электронных весов сводится к измерению силы веса, воздействующей на тензодатчик, посредством преобразования возникающих изменений, например деформации, в пропорциональный выходной электрический сигнал. Широкое распространение тензодатчиков объясняется целым рядом их досчтоинств: - малые габариты и вес; - малоинерционость, что позволяет применять тензодатчики как при статических, так и при динамических измерениях; - обладают линейной характеристикой; - позволяют дистанционно и во многих точках проводить измерения; - способ установки их на исследуемую деталь не требует сложных приспособлений и не искажает поле деформаций исследуемой детали. А их недостаток, заключающейся в температурной чувствительности, можно в большинстве случаев скомпенсировать. Типы преобразователей и их конструктивные особенности В основе работы тензопреобразователей лежит явление тензоэффекта, заключающееся в изменении активного сопротивления проводников при их механической деформации. Характеристикой тензоэффекта материала является коэффициент относительной тензочувствительности К, определяемый как отношение изменения сопротивления к изменению длины проводника: k = er / el где er = dr / r - относительное изменение сопротивления проводника; el = dl / l - относительное изменение длины проводника. При деформации твердых тел изменение их длины связано с изменением объема, кроме того, изменяются и их свойства, в частности величина удельного сопротивления . Поэтому значение коэффициента тензочувствительности в общем случае должно быть выражено как K = (1 + 2μ) + m Здесь величина (1+2μ) характеризует изменение сопротивления, связанное с изменением геометрических размеров (длины и сечения) проводника, а - изменение удельного сопротивления материала, связанное с изменением его физических свойств. Если при изготовлении тензопреобразователя использованы полупроводниковые материалы, то чувствительность определяется в основном изменением свойств материала решетки при ее деформации, и K» m и может меняться для различных материалов от 40 до 200. Все существующие преобразователи можно разделить на три основных типа: - проволочные; - фольговые; - пленочные. П роволочные тензодатчик в технике измерений неэлектрических величин используются по двум направлениям. Первое направление – использование тензоэффекта проводника, находящегося в состоянии объемного сжатия, когда естественной входной величиной преобразователя является давление окружающего его газа или жидкости. В этом случае преобразователь представляет собой катушку провода (обычно манганинового), помещенную в область измеряемого давления (жидкости или газа). Выходной величиной преобразователя является изменение его активного сопротивления. Второе направление – использование тензоэфффекта растягиваемой проволоки из тензочувствительного материала. При этом тензопреобразоатели применяются в виде “свободных” преобразователей и в виде наклеиваемых. “Свободные” тензопреобразователи выполняются в виде одной или ряда проволок, закрепленных по концам между подвижной и неподвижной деталями, и, как правило, выполняющих одновременно роль упругого элемента. Естественной входной величиной таких преобразователей является весьма малое перемещение подвижной детали. Устройство наиболее распространенного типа наклеиваемого проволочного тензодатчика изображено на рисунке 2. На полоску тонкой бумаги или лаковую пленку наклеивается уложенная зигзагообразно тонкая проволока диаметром 0,02-0,05 мм. К концам проволоки присоединяются выводные медные проводники. Сверху преобразователь покрывается слоем лака, а иногда заклеивается бумагой или фетром. Датчик обычно устанавливается так, чтобы его наиболее длинная сторона была ориентирована в направлении измеряемой силы. Такой преобразователь, будучи приклееным к испытуемой детали, воспринимает деформации ее поверхностного слоя. Таким образом, естественной входной величиной наклеиваемого преобразователя является деформация поверхностного слоя детали, на которую он наклеен, а выходной- изменение сопротивления преобразователя, пропорциональное этой деформации. Обычно наклеиваемые датчики используются много чаще ненаклеиваемых. Рисунок 2- Наклеиваемый проволочный тензопреобразователь: 1- тензочувствительная проволока; 2- клей или цемент; 3- целлофановая или бумажная подложка; 4- выводные проводники Измерительной базой преобразователя является длина детали, занимаемая проволокой. Наиболее часто используются преобразователи с базами 5 – 20 мм, обладающие сопротивлением 30 – 500 ом. Кроме наиболее распространенной петлевой конструкции проволочных тензодатчиков, существуют и другие. При необходимости уменьшения измерительной базы преобразователя (до 3 – 1 мм) его изготовляют витковым способом, который заключается в том, что на оправке круглого сечения на трубку из тонкой бумаги наматыается спираль из тензочувствительной проволоки. Затем эта трубка проклеивается, снимается с оправки, расплющивается и к концам проволоки прикрепляются выводы. Когда надо получить от цепи с тезопреобразователем ток большой величины, часто используют “мощные” проволочные тензопреобразователи. Они состоят из большого числа (до 30 – 50) параллельно соединенных проволок, отличаются большими габаритами (длина базы 150 – 200 мм) и дают возможность значительно увеличить пропускаемый через преобразователь ток (рисунок 3). Р исунок 3- Низкоомный («мощный») проволочный тензопреобразователь: 1- тензочувствительная проволока; 2- клей или цемент; 3- целлофановая или бумажная подложка; 4- выводной проводник Проволочные датчики имеют малую поверхность связи с образцом (основанием), что уменьшает токи утечки при высоких температурах и дает большее напряжение изоляции между чувствительным элементом и образцом. Фольговые тензодатчики Фольговые тензодатчики являются наиболее популярной версией наклеиваемых тензодатчиков. Фольговые преобразователи представляют из себя ленту из фольги толщиной 4 –12 мкм, на которой часть металла выбрана травлением таким образом, что оставшаяся его часть образует показанную на рисунке 4 решетку с выводами. При изготовлении такой решетки можно предусмотреть любой рисунок решетки, что является существенным достоинством фольговых тензопреобразователей. На рисунке 4,а показан внешний вид преобразователя из фольги, предназначенного для измерения линейных напряженных состояний, на рис. 4,в – фольговый преобразователь, наклеиваемый на вал, для измерения крутящих моментов, а на рис.4,б – наклеиваемый на мембрану. Р исунок 4- Фольговые преобразователи: 1- подгоночные петли; 2- витки, чувствительные к растягивающим мембрану усилиям; 3- витки, чувствительные к сжимающим мембрану усилиям Серьезным преимуществом преобразователей из фольги является возможность увеличивать сечение концов преобразователя; приваривание (или припаивание) выводов можно в этом случае осуществить значительно надежнее, чем в преобразователях из проволоки. Фольговые тензодатчики по сравнению с проволочными имеют большее отношение площади поверхности чувствительного элемента к площади поперечного сечения (чувствительность) и более стабильны при критических температурах и длительных нагрузках. Большая площадь поверхности и малое поперечное сечение также обеспечивает хороший температурный контакт чувствительного элемента с образцом, что уменьшает саморазогрев датчика. Для изготовления фольговых тензопреобразователей используются те же металлы, что и для проволочных датчиков (константан, нихром, сплав никеля с железом и т.д.), а также применяются еще и другие материалы, например титаноалюминиевый сплав 48Т-2, обеспечивающий измерение деформаций до 12%, а также целый ряд полупроводниковых материалов. Пленочные тензодатчики В последние годы появился еще один способ массового изготовления приклеиваемых тензосопротивлений, заключающийся в вакуумной возгонке тензочувствительного материала и последующей конденсации его на подложку, напыляемую непосредственно на деталь. Такие тензопреобразователи получили название пленочных. Малая толщина таких тензопреобразователей (15-30 мкм) дает существенное преимущество при измерениях деформаций в динамическом режиме в области высоких температур, где измерения деформации представляют собой специализированную область исследований. Целый ряд пленочных тензопреобразователей на основе висмута, титана, кремния или германия выполняется в виде одной проводящей полоски (рисунок 5). Такие преобразователи не имеют недостатка, заключающегося в уменьшении относительной чувствительности преобразователя по сравнению с чувствительностью материала, из которого выполнен преобразователь. Р исунок 5- Пленочный тензопреобразовтель:1- тензочувствительная пленка; 2- пленка лака; 3- выводной проводник Тензометрический коэффициент преобразователя, выполненного на основе металлической пленки, равен 2-4, а его сопротивление колеблется в диапазоне от 100 до 1000 Ом. Преобразователи, выполненные на основе полупроводниковой пленки, имеют коэффициент порядка 50-200, и поэтому они более чувствительны к прикладываемому напряжению. При этом нет необходимости использовать усилительные схемы, поскольку выходное напряжение полупроводникового тензометрического моста составляет примерно 1 В. К сожалению, сопротивление полупроводникового преобразователя изменяется в зависимости от прикладываемого напряжения и является существенно нелинейным во всем диапазоне напряжений, а также сильно зависит от температуры. Таким образом, хотя при работе с тензометром на основе металлической пленки требуется усилитель, его линейность весьма высока, а температурный эффект можно легко скомпенсировать. ________________________________________________________________________ _______________________________________________________ ________________________________ |