Главная страница
Навигация по странице:

  • СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ КЛЕТКА – ЭЛЕМЕНТАРНАЯ ГЕНЕТИЧЕСКАЯ И СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ЖИВОГО

  • ОСНОВНЫЕ ПОЛОЖЕНИЯ СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ

  • СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ

  • Эукариотические клетки

  • Ядро (nucleus, karion)

  • Цитоплазматическая мембрана Функции мембран

  • 3. Транспортную

  • Цитоплазма

  • Органоиды специального назначения: реснички, жгутики и микроворсинки

  • Одномембранные органоиды цитоплазмы Эндоплазматическая сет

  • Двумембранные органоиды цитоплазмы Митохондрии

  • Немембранные органоиды цитоплазмы Рибосомы

  • АНАБОЛИЧЕСКАЯ СИСТЕМА КЛЕТКИ И ЕЕ ОРГАНОИДЫ: ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ, КОМПЛЕКС ГОЛЬДЖИ, РИБОСОМЫ Анаболическая

  • КАТАБОЛИЧЕСКАЯ СИСТЕМА И ЕЕ ОРГАНОИДЫ: ЛИЗОСОМЫ, ПЕРОКСИСОМЫ, ГЛИОКСИСОМЫ, МИТОХОНДРИИ.

  • ОБМЕННЫЕ ПРОЦЕССЫ В ЖИЗНЕННОМ ЦИКЛЕ КЛЕТКИ

  • Лекция 2 (1). Тема клеточный уровень организации


    Скачать 283.54 Kb.
    НазваниеТема клеточный уровень организации
    Дата28.03.2023
    Размер283.54 Kb.
    Формат файлаdocx
    Имя файлаЛекция 2 (1).docx
    ТипДокументы
    #1021199

    РАЗДЕЛ I. ЦИТОЛОГИЯ
    ТЕМА: КЛЕТОЧНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ

    ЖИВОГО
    1. КЛЕТКА – ЭЛЕМЕНТАРНАЯ ГЕНЕТИЧЕСКАЯ И СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ЖИВОГО

    2. ОСНОВНЫЕ ПОЛОЖЕНИЯ СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ

    3. СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ
    КЛЕТКА – ЭЛЕМЕНТАРНАЯ ГЕНЕТИЧЕСКАЯ И

    СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ЖИВОГО
    Раздел биологии, занимающийся изучением структурной и функциональной организации клетки как единицы живого, получил название цитологии (от греч. cytos – клетка, полость, logos – наука). Открытие клетки связано с именами великих ученых-микроскопистов – Р. Гука, M. Мальпиги, Н. Грю, описавших ячеистое строение многих растительных объектов, а также с именем Антони Ван Левенгука, впервые наблюдавшего реальные клетки животных.

    В 1939 году немецкий зоолог Т. Шванн опубликовал труд "Микроскопические исследования о соответствии в структуре и росте животных и растений", в котором были заложены основы клеточной теории. В этой работе Т. Шванн пришел к двум выводам:

    1) клетка – главная структурная единица всех растительных и животных организмов;

    2) процесс образования клеток обусловливает рост, развитие и дифференцировку всех растительных и животных тканей и организмов.

    Дальнейшее развитие клеточной теории связано с именем немецкого ученого Рудольфа Вирхова, который в 1858 году опубликовал свой труд «Целлюлярная патология». В этой работе Р. Вирхов дополнил клеточную теорию третьим выводом: «Omnis cellula e cellula» каждая клетка из клетки. Этот вывод блестяще подтвердился дальнейшим развитием биологии. В настоящее время не известно иных способов появления клеток помимо их деления. В своей работе Р. Вирхов впервые подошел к объяснению патологического процесса, показав его связь в организме с морфологическими структурами, с определенными изменениями в структуре и функции клеток. Он является основоположником патологической анатомии.

    Однако ряд выводов Р. Вирхова оказались ошибочными и закономерно встретили возражения со стороны современников. По Р. Вирхову патологический процесс в организме представляет собой сумму нарушений жизнедеятельности отдельных клеток, это локальный процесс. Р. Вирхов и его последователи не видели также качественных отличий между частью и целым, рассматривая организм вне его исторического развития и условий существования. Эту идею Р. Вирхова обоснованно критиковали И.М. Сеченов, C.П. Боткин, И.П. Павлов, которые показали, что организм – единое целое и интеграция его частей осуществляется, прежде всего, ЦНС.

    Благодаря исследованиям Т. Шванна, М. Шлейдена, Р. Вирхова, Т. Моргана, С.Г. Навашина, Н.К. Кольцова, Д.Н. Насонова и др., клетку рассматривают как наименьшую элементарную единицу живого, которой свойственны такие признаки, как метаболизм, воспроизведение, реактивость и изменчивость.
    ОСНОВНЫЕ ПОЛОЖЕНИЯ СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ
    1. Все живые организмы состоят из клеток. Клетка – единица строения, функционирования, размножения и индивидуального развития живых организмов. Вне клетки нет жизни.

    2. Клетки всех организмов сходны между собой по строению и химическому составу.

    3. Клетки могут образовываться только из клеток путем деления.

    4. Клеточное строение всех ныне живущих организмов – свидетельство единства происхождения.

    Значение клеточной теории:

    - доказательство морфологической основы единства живой природы;

    - общебиологическое объяснение живой природы;

    - доказательство эволюционных процессов.
    СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ

    ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ
    Жизненные формы организмов:

    1. Доклеточные – царство вирусов.

    2. Клеточные: прокариоты – царства бактерий и цианобактерий,

    эукариоты – царства растений, животных и грибов.

    Основными отличиями строения и жизнедеятельности прокариотических клеток от эукариотических клеток являются следующие (рис. 1):



    Рис. 1. Отличие эукариот от прокариот: а - клетка прокариот, б - клетка

    эукариот
    1. Клетка прокариот не имеет оформленного (ограниченного мембраной) ядра, наследственная информация в ней содержится в кольцевой молекуле ДНК. ДНК не заблокирована белками, в первую очередь гистонами, поэтому все гены в ней активны, т. е. постоянно функционируют.

    У эукариотических клеток имеется оформленное ядро, а генетический аппарат представлен молекулами ДНК в комплексе с белками – гистонами, упаковывающими ДНК в компактные структуры и регулирующими активность ее генов.

    2. Цитоплазма прокариотической и эукариотической клеток окружена мембраной (плазмолеммой), однако у бактерий, растений и грибов снаружи от плазмолеммы располагается клеточная стенка, образованная веществом полисахаридной природы – муреином (бактерии), целлюлозой (растения) или хитином (грибы). Клеточная оболочка животной клетки образована плазмолеммой, покрытой снаружи слоем гликокаликса.

    3. В цитоплазме прокариотической клетки отсутствуют мембранные органеллы (митохондрии, пластиды, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы), а ограниченное количество мембран представляет собой впячивания плазмолеммы внутрь цитоплазмы – мезосому.

    4. Синтез белка осуществляется свободными рибосомами, имеющими меньший размер (70S), чем рибосомы эукариотнческих клеток (80S).

    Большая субъединица рибосомы прокариотической клетки содержит 2 молекулы рибосомной РНК (рРНК), тогда как субъединица рибосомы эукариотической клетки – 3 молекулы рРНК.

    5. Специальные органеллы прокариотической клетки – жгутики устроены проще, чем жгутики эукариотической клетки: они лишены внутреннего каркаса из микротрубочек и микрофиламентов.

    6. В цитоплазме многих прокариотических клеток имеются газовые вакуоли.

    7. В прокариотических клетках отсутствует клеточный центр.
    8. Прокариоты размножаются простым делением клетки, у эукариот имеет место половой процесс с образованием гамет.

    9. У прокариотических клеток отсутствует амебоидное движение и внутриклеточные перемещения цитоплазмы.

    10. Синтез АТФ осуществляется в прокариотических клетках на мембране плазмолеммы.

    Эукариотические клетки имеют обособленное ядро, наружную биологическую мембрану – плазмолемму и цитоплазму с органеллами и включениями.
    Структура и функции клеточного ядра
    Ядро (nucleus, karion) это постоянный структурный компонент всех клеток эукариот. Оболочка интерфазного ядра состоит из двух элементарных мембран (наружной и внутренней), пространство между которыми называется перинуклеарным. Мембраны имеют поры, через которые идет обмен веществ между ядром и цитоплазмой. Наружная ядерная мембрана переходит в стенки каналов гранулярной эндоплазматической сети, на которой расположены рибосомы.

    Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), хроматин. Внутри ядра можно увидеть темные участки – ядрышки (рис. 2).


    Рис. 2. Строение интерфазного ядра
    Ядерная оболочка состоит из двух липидных бислоев – наружной ядерной мембраны и внутренней ядерной мембраны. Пространство между мембранами называется перинуклеарным пространством; оно составляет единый компартмент с полостью эндоплазматического ретикулума. Обычно ширина перинуклеарного пространства составляет около 20–40 нм.

    Наружная ядерная мембрана непосредственно переходит в мембрану эндоплазматической сети, но при этом наружная ядерная мембрана содержит различные белки в значительно более высоких концентрациях, чем они присутствуют в ЭПС.

    Внутренняя мембрана ограничивает кариоплазму и изнутри покрыта ядерной ламиной, сетью промежуточных филаментов, которая поддерживает форму ядерной мембраны, обеспечивает прикрепление хроматина к оболочке ядра и участвует в регуляции экспрессии генов. Ядерная ламина состоит из белков ламинов. Хотя ЭПС и обе мембраны соединены друг сдругом, многие белки, входящие в их состав, фиксированы в мембране, а не диффундируют свободно в ее пределах.

    Структурным компонентом ядерной оболочки является поровый комплекс. Поры – участки соединения наружной и внутренней ядерных мембран. Они занимают до 10-15% поверхности всего ядра и имеют сложную гетерогенную белковую структуру – белковые гранулы, образующие каналы для транспортировки веществ. Число ядерных пор и их размер может существенно варьировать в зависимости от размеров ядра и функционального состояния клетки.

    Ядерный сок (кариоплазма) – внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала.

    Хроматин представляет собой дезоксирибонуклеопротеин. Это комплекс молекулы ДНК с гистоновыми белками. Хроматин в электронный микроскоп выявляется в виде тонких нитей, глыбок и гранул. В процессе митоза хроматин спирализуется и образует хорошо видимые окрашенные структуры – хромосомы.

    Ядрышки – непостоянные образования, они исчезают при делении клеток и восстанавливаются после окончания деления. В составе ядрышка различают фибриллярный центр (рДНК), периферический фибриллярный компонент (рРНК) и гранулярный компонент (РНП). Т.о. в ядрышках происходит формирование рибосомных субъединиц, которые затем через поры выходят из ядра в цитоплазму.
    Цитоплазматическая мембрана

    Функции мембран:

    1. Барьерная (отграничивающую);

    2.Регуляторная (осуществляют регуляцию метаболических потоков);

    3. Транспортную (обеспечение избирательной проницаемости веществ путем пассивного и активного транспорта);

    3. Структурная;

    4. Обменная.

    Биологические мембраны построены в основном из липидов, белков и углеводов.

    Предложено несколько моделей строения цитоплазматических мембран (модель «сэндвича» - модель Даниели и Даусона, модель Ленарда и др.). По-видимому, в зависимости от функции существует несколько типов мембран. В настоящее время принята за основу жидкостно-мозаичная модель, предложенная Сингером-Николсоном в 1972 г. (рис. 3). Согласно этой модели в состав мембран входит бимолекулярный слой фосфолипидов, в который погружены молекулы белков.

    Рис. 3. Модель Сингера-Николсона (жидкостно-мозаичная)

    Фосфолипиды – соединения глицерина, жирных кислот и остатка фосфорной кислоты. Это водонерастворимые соединения, которые состоят из полярной (заряженной) головки (азот-содержащая группа) и двух длинных неполярных (незаряженных) хвостов (цепи жирных кислот). Молекулы липидов обращены друг к другу неполярными хвостами, а их полярные полюса (головки) остаются снаружи, образуя гидрофильные поверхности.

    В бимолекулярный слой липидов погружены белковые молекулы. Белки мембран можно разделить на три группы: периферические (наиболее слабо связаны с мембраной), погруженные (полуинтегральные) и пронизывающие (интегральные, трансмембранные), формирующие поры и каналы мембраны. В функциональном отношении белки мембран подразделяются на ферментативные, транспортные, структурные и регуляторные.

    На внешней поверхности плазматической мембраны белковые и липидные молекулы связаны с углеводными цепями (гликопротеиды и гликолипиды), образуя гликокаликс – рецепторный аппарат клетки. Гликопротеиды выполняют роль рецепторов, клетка приобретает способность специфически реагировать на воздействия извне. Так, взаимодействие гормона со «своим» рецептором снаружи вызывает изменение структуры интегрального белка, что приводит к запуску клеточного ответа. В частности, такой ответ может проявиться в образовании «каналов», по которым растворы некоторых веществ начинают поступать в клетку или выводятся из нее. Гликолипиды обеспечивают одну из важных функций мембраны – обеспечение межклеточных контактов.

    Под плазматической мембраной со стороны цитоплазмы имеются белковые фибриллы, формирующие опорно-сократительный аппарат клетки.

    У растительных клеток кнаружи от мембраны расположена плотная структура – клеточная оболочка, состоящая из полисахаридов (целлюлозы).

    Одно из важнейших свойств цитоплазмы связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава. Малые молекулы и ионы проходят через мембраны путем пассивного и активного транспорта.

    Пассивный транспорт происходит без затрат энергии путем свободной диффузии, облегченной диффузии и осмоса (рис. 4).

    Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, т.е. по градиенту концентрации.

    Если вещества хорошо растворимы в жирах, то они проникают в клетку путем простой диффузии (кислород, углекислый газ).

    Облегченная диффузия – транспорт веществ, нерастворимых в жирах и не проходящих сквозь поры, через ионные каналы с помощью белков переносчиков.



    Рис. 4. Схема активного и пассивного транспорта веществ через мембрану
    Транспорт воды через полупроницаемые мембраны называется осмосом (рис. 5).


    Рис. 5. Осмос
    В цитоплазматической мембране присутствуют специальные каналы для транспортировки воды с растворенными в ней ионами и молекулами. В 1989 году американский ученый Питер. Это выделил мембранный белок, образующий водные каналы, и назвал аквапорином. В тканях человека было обнаружено 11 аналогов аквопорина, причем ряд из них может привести к появлению тех или иных заболеваний человека, например, к некоторым формам диабета и хронической сердечной недостаточности.

    Вода переходит из области с меньшей концентрацией солей в область, где их концентрация больше. Возникающее давление на полупроницаемую мембрану называют осмотическим.

    Напряженное состояние клеточной оболочки, создаваемое давлением внутриклеточной жидкости, называется тургором. Тургор обуславливается тремя факторами: внутренним осмотическим давлением клетки, которое вызывает напряжение клеточной оболочки, внешним осмотическим давлением, а также упругостью клеточной оболочки. Снижением тургора сопровождаются процессы обезвоживания, автолиза (распада), увядания и старения клеток.

    Активный транспорт веществ через мембрану осуществляется против градиента концентрации с затратой энергии АТФ и при участии белков-переносчиков. Так транспортируются аминокислоты, сахар, ионы калия, натрия, кальция и др.

    Примером активного транспорта может быть работа калий - натриевого насоса (рис. 6).

    Рис. 6. Схема работы калий - натриевого насоса
    Концентрация К+ внутри клетки в 10 – 20 раз выше, чем снаружи, а Na+– наоборот. Для поддержания данной концентрации происходит перенос трех ионов Na+ из клетки на каждые два иона К+ в клетку. В этом процессе участвует белок в мембране, выполняющий функцию фермента, расщепляющего АТФ с высвобождением энергии, необходимой для работы насоса.

    Перенос макромолекул и крупных частиц внутрь клетки осуществляется за счет эндоцитоза, а удаление из клетки - путем экзоцитоза (рис. 7).



    Рис.7. Схема эндо- и экзоцитоза
    При эндоцитозе мембрана образует впячивания или выросты, которые затем отшнуровываясь превращаются во внутриклеточные пузырьки, содержащие захваченный клеткой продукт. Этот процесс происходит с затратойэнергии АТФ. Различают два вида эндоцитоза – фагоцитоз (поглощение клеткой крупных частиц) и пиноцитоз (поглощение жидких веществ).

    Мембрана принимает участие в выведении веществ из клетки в процессе экзоцитоза. Таким способом из клетки выводятся гормоны, белки, жировые капли и др.

    Цитоплазма – внутреннее содержимое клетки без ядра, состоит из основного вещества, органелл и включений.

    Гиалоплазма (цитозоль) – основное вещество цитоплазмы, заполняющее пространство между клеточными органеллами. Гиалоплазма содержит около 90% воды и различные белки, аминокислоты, нуклеотиды, ионы неорганических соединений и др.

    Крупные молекулы белка образуют коллоидный раствор, который может переходить из золя (невязкое состояние) в гель (вязкий). В гиалоплазме протекают ферментативные реакции, метаболические процессы, синтез аминокислот, жирных кислот. Гиалоплазма содержит множество белковых нитей – филаментов, которые пронизывают цитоплазму и образуют цитоскелет.

    Включения - это относительно непостоянные (временные) компоненты цитоплазмы, которые не имеют мембраны и представляют собой продукты, подлежащие выведению из организма (секреторные (например, инсулин в клетках поджелудочной железы), экскреторные (например, мочевая и щавелевая кислоты)); запасные питательные вещества (гликоген, крахмал, белки, жиры, углеводы); пигменты (меланин, гемоглобин).

    Органеллы (органоиды) – постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции. В зависимости от функции различают органоиды общего и специального назначения. К органоидам специального назначения относятся микроворсинки, реснички, жгутики. Органеллы общего назначения делятся на немембранные (рибосомы, клеточный центр (центросома), микротрубочки, промежуточные филаменты, микрофиламенты) и мембранные. К одномембранным органеллам относятся эндоплазматическая сеть (ретикулум), аппарат Гольджи, лизосомы, пероксисомы, вакуоли. К двумембранным органеллам относятся митохондрии и пластиды растительных клеток.

    Органоиды специального назначения: реснички, жгутики и микроворсинки – органеллы передвижения. Представляют собой тонкие цилиндрические выросты цитоплазмы, покрытые плазматической мембраной. Жгутики отличаются от ресничек длиной. Микроворсинки формируются только на одной поверхности клетки.

    Одномембранные органоиды цитоплазмы
    Эндоплазматическая сеть (ЭПС) – это система цистерн и каналов, стенка которых образована мембраной. Нередко цистерны имеют пузыревидные утолщения. ЭПС пронизывает цитоплазму в разных направлениях и делит ее на изолированные ячейки – компартменты. Компартментализация способствует пространственному разделению веществ и процессов в клетке. ЭПС выполняет синтетическую и транспортную функции.

    Если на поверхности мембран каналов ЭПС располагаются рибосомы, она называется гранулярной или шероховатой, если рибосом нет – гладкой. Функции ЭПС: 1) биосинтез белков (гранулярная ЭПС), жиров и углеводов (гладкая ЭПС), 2) транспортировка всех веществ в клетке, 3) компартментализация цитоплазмы (разделение на отсеки), 4) участие в образовании мембран цитоплазмы. Отчленяющиеся от ЭПС пузырьки представляют исходный материал для других одномембранных органелл.

    Аппарат Гольджи (пластинчатый комплекс) назван в честь К. Гольджи, который обнаружил органеллу в 1898 г. Обычно расположен около клеточного ядра.

    Основным элементом органеллы является мембрана, образующая уплощенные цистерны – диски, которые располагаются друг над другом(4-6). Края цистерн переходят в трубочки, от которых отчленяются пузырьки, транспортирующие заключенное в них вещество к месту его потребления (лизосомы, вакуоли). Поэтому наиболее крупные аппараты Гольджи находятся в секретирующих клетках. Диски-цистерны формируются из пузырьков, отпочковывающихся от гладкой ЭПС. Функции: секреция веществ, их сортировка и упаковка, образование комплексных соединений, формирование лизосом.

    Лизосомы (от греч. lisis – разрушение, soma – тело) – пузырьки больших или меньших размеров, заполненные ферментами (протеазами, липазами, нуклеазами). Лизосомы образуются в ЭПС и аппарате Гольджи. Основная функция лизосом – внутриклеточное расщепление и переваривание веществ, поступивших в клетку и удаление их из клетки. Выделяют первичные и вторичные лизосомы. Пузырьки с набором ферментов, отделившиеся от цистерн аппарата Гольджи, называются первичными лизосомами. Они участвуют во внутриклеточном пищеварении.

    Если первичные лизосомы сливаются с фагоцитарными и пиноцитарными вакуолями, образуются вторичные лизосомы. Если в них происходит переваривание веществ, поступивших в клетку путем эндоцитоза, то эти вторичные лизосомы называются пищеварительными вакуолями, если происходит переваривание компонентов самой клетки (остатки фрагментов ЭПС, митохондрий, рибосом и др.) при их регенерации, то они называются аутофагирующими вакуолями. Продукты переваривания поглощаются клеткой, а лизосомы, содержащие нерасщепленные материал, называются остаточными тельцами, которые путем экзоцитоза выводятся наружу.

    Аутофагирующие вакуоли в больших количествах выявляются при голодании, интоксикациях, старении, гипоксии и т.д. При механическом разрушении клетки (например, при травме), происходит аутолиз, т.е. самопереваривание под действием ферментов лизосом. Таким образом, лизосомы участвуют во внутриклеточном пищеварении, физиологической и репаративной (восстановительной) регенерации, в защитных реакциях клетки, когда происходит переваривание и обезвреживание чужеродных веществ, например, микробов, поглощенных путем фагоцитоза.

    Пероксисомы, или микротельца – это органоиды, освобождающие клетки от перекисей. Они имеют форму пузырьков и содержат два основных фермента – каталазу и пероксидазу. Перекисные соединения накапливаются в клетке при разрушении мембранных органоидов вследствие неферментативного окисления жирных кислот, входящих в состав липидов биомембран. Перекиси оказывают токсичное воздействие на клетку, вызывают денатурацию белка, снижают активность ферментов, и подвергаются утилизации при участии пероксисом.

    Вакуоли содержатся в цитоплазме клеток растений, занимая до 90% объема. Они образуются из мелких пузырьков, отщепляющихся от ЭПС. В вакуолях запасается вода, питательные вещества (белки, сахара), откладываются пигменты. Вакуоли являются главными поставщиками молекул воды, необходимых для фотосинтеза, а также поддерживают тургор (давление) в клетке. В животных клетках встречаются временные вакуоли, которые занимают не более 5% объема.

    ЭПС, комплекс Гольджи, лизосомы и вакуоли в совокупности образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга.
    Двумембранные органоиды цитоплазмы
    Митохондрии – это структуры округлой или палочковидной формы. Обычно митохондрии скапливаются в тех участках, где велика потребность в АТФ (скелетные мышцы, сердце). Состоит из двух мембран. Наружная мембрана гладкая, внутренняя образует многочисленные складки – кристы.

    Митохондрии содержат три группы ферментов: во внутреннем матриксе находятся ферменты цикла Кребса, которые катализируют окислительно-восстановительные реакции, на кристах находятся ферменты тканевого дыхания и окислительного фосфорилирования (АТФ-сомы). В митохондриях происходит аэробное окисление пировиноградной и молочной кислот, в результате чего высвобождается большое количество энергии (достаточное для синтеза в результате фосфорилирования 36 молекул АТФ). Это ключевой цикл клеточного дыхания (поскольку протекает с поглощением кислорода и выделением углекислого газа), который называется циклом Кребса, или циклом трикарбоновых кислот. Благодаря этому свойству митохондрии называют «энергетическими станциями» клетки.

    Энергия АТФ используется: 1) для биосинтеза веществ (50%), 2) для транспортировки (30-40%), 3) для механической работы – сокращение мышц, 4) для деления клеток, 5) рассеивается в виде тепла. Образование митохондрий происходит путем саморепродукции, поскольку в них содержится собственная ДНК в виде 2-10 кольцевых молекул.

    Пластиды – это тоже двумембранные органеллы, присутствующие в растительных клетках. Различают три вида пластид: хлоропласты (синтезируют зеленый пигмент), хромопласты (красный), лейкопласты (бесцветный).

    В матриксе пластид имеются телокоиды, расположенные стопкой – граны. Различают три вида пластид: хлоропласты (синтезируют пигмент зеленого цвета, участвуют в фотосинтезе), хромопласты (синтезируют каротиноиды - пигменты красного и желтого цвета) и лейкопласты (бесцветный или неактивный пигмент). Иногда в растениях можно видеть преобразование пластид из зеленых в красные и желтые (изменение осенью цвета листьев на деревьях), из бесцветных в зеленые (картофель на свету) и др. Наличие в пластидах собственной ДНК, как и в митохондриях, обеспечивает возможность саморепродукции.
    Немембранные органоиды цитоплазмы
    Рибосомы – комплекс рРНК и белка (рибонуклеопротеид). На рибосомах осуществляется соединение аминокислот в полипептидные цепочки (второй этап биосинтеза белка – трансляция). Каждая рибосома состоит из двух частей: малой и большой субъединиц. Объединение их происходит в присутствии мРНК.

    Клеточный центр – это органоид характерен для животных клеток. Располагается около ядра. Состоит из парных центриолей, расположенных перпендикулярно, и центросферы и астросферы. Центриоль имеет вид полого цилиндра, стенка которого образована 27 микротрубочками (9 триплетов). В функцию центриолей входит образование нитей митотического веретена деления, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клеток, обеспечивая расхождение сестринских хроматид.

    Микротрубочки – тончайшие трубочки, стенки которых образованы белком тубулином. Микрофиламенты – тонкие белковые нити, состоят из белка актина. Участвуют в образовании нитей веретена деления и цитоскелета.

    Промежуточные филаменты (ПФ) – нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. Средний диаметр ПФ – около 10 нм (9–11 нм), меньше, чем у микротрубочек (около 25 нм) и больше, чем у актиновых микрофиламентов (5–9 нм). В ядре известен только один тип ПФ – ламиновых, остальные типы — цитоплазматические. В большинстве животных клеток ПФ образуют «корзинку» вокруг ядра, откуда направлены к периферии клеток. ПФ особенно много в клетках, подверженных механическим нагрузкам: в эпителиях, где ПФ участвуют в соединении клеток друг с другом через десмосомы, в нервных волокнах, в клетках гладкой и поперечно-полосатой мышечной ткани.
    АНАБОЛИЧЕСКАЯ СИСТЕМА КЛЕТКИ И ЕЕ ОРГАНОИДЫ: ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ, КОМПЛЕКС ГОЛЬДЖИ,

    РИБОСОМЫ
    Анаболическая (ассимиляция, пластический обмен) и катаболическая (диссимиляция, энергетический обмен) системы клетки неразрывно связаны, так как все процессы жизнедеятельности клетки немыслимы без энергии АТФ, которая, в свою очередь, не может образовываться без ферментных систем, строящихся в результате анаболических реакций. Также неразрывно связаны друг с другом потоки вещества и энергии, так как гетеротрофные клетки способны использовать только энергию, заключенную в сложных химических соединениях.

    К анаболической системе клетки относятся: рибосомы, эндоплазматический ретикулум, комплекс Гольджи.
    КАТАБОЛИЧЕСКАЯ СИСТЕМА И ЕЕ ОРГАНОИДЫ:

    ЛИЗОСОМЫ, ПЕРОКСИСОМЫ, ГЛИОКСИСОМЫ, МИТОХОНДРИИ.
    К катаболической системе клетки относятся: лизосомы, пероксисомы, глиоксисомы, митохондрии.

    Пероксисомы – клеточные органеллы, в которых осуществляются окисление жирных кислот, синтез желчных кислот, холестерина, а так же эфиросодержащих липидов, участвующих в построении миелиновой оболочки нервных волокон. Они есть во всех эукариотических клетках. Их функции сильно различаются в клетках разных типов. Это один из главных центров утилизации кислорода в клетке. Содержат ферменты: оксидазы, уратоксидазы и каталазы. Каталаза окисляет фенолы, муравьиную кислоту, формальдегид и спирты. Этот тип окислительных реакций особенно важен в клетках печени и почек, где пероксисомы обезвреживают ядовитые вещества, попадающие в кровоток.

    Глиоксисомы – клеточные органеллы растений, которые содержат ферменты, необходимые для превращения жиров в углеводы. Они принимают метаболиты, поступающие из жировых капель – сферосом, превращают их в янтарную кислоту, которая затем подвергается последовательному превращению в продукты, восстанавливаемые до сахаров.
    ОБМЕННЫЕ ПРОЦЕССЫ В ЖИЗНЕННОМ ЦИКЛЕ КЛЕТКИ
    Клетка является открытой, саморегулирующейся системой. Для нее характерен поток вещества, энергии и информации, обеспечивающие обменные процессы. Для клетки, как и в целом для организма, различают внешний и внутренний обмен. Внешний обмен – это обмен с внешней средой: поступление питательных веществ, выделение продуктов метаболизма. Внутренний обмен осуществляется путем катаболизма (диссимиляции) и анаболизма (ассимиляции). Ассимиляция осуществляется путем реакций пластического обмена (биосинтез белков, жиров, углеводов, фотосинтез). По типу ассимиляции организмы делят на автотрофные и гетеротрофные. Диссимиляция осуществляется путем реакций энергетического обмена (синтез АТФ за счет энергии расщепления сложных органических веществ). По типу диссимиляции организмы бывают анаэробные и аэробные.




    написать администратору сайта