Тема Радианная мера углов и дуг
Скачать 1.97 Mb.
|
Алгебра и начала анализа 10 класс ТригонометрияТема: Радианная мера углов и дуг Тригонометрия(«три» - три, «гониа» - угол, «метриа» - измеряю) раздел математики, изучающий соотношение сторон и углов в треугольнике Радианом называется величина центрального угла, который опирается на дугу окружности длиной в один радиус (обозначается 1 рад).1 рад R R R A B O AB=R AOB=1 рад 600 1 рад Из скольких дуг, длиной R, состоит окружность? Подсказка: вспомните формулу длины окружности… R R R R R R ? Задание 1. Вывести правила перевода из радианной меры в градусную и наоборот. Ответ: α0= α0· рад правило перевода из градусной меры в радианную; α рад= α· правило перевода из радианной меры в градусную. 1 рад = ; 1 рад 57019’ 10 = рад; 10 0,017 рад 3600 – 2 рад 10 – х рад 3600 – 2 рад х 0 – 1 рад Окружность с центром в начале системы координат Oxy и радиусом, равным единице, называется единичной, а ограниченный ей круг – тригонометрическим.Приняв точку пересечения окружности с положительной частью оси Ох за начало отсчета; Выбрав положительное направление – против часовой стрелки, отрицательное – по часовой стрелке; Отложив от начала отсчета дугу в 1 рад, мы получим, что тригонометрическая окружность в некотором смысле «эквивалентна» понятию «числовая прямая». x y 0 1 1 0 «+» «» 1 0 1 0 3 2 6 2 у х 1 – – Проследите за одновременным движением точки на координатной прямой и на тригонометрической окружности: Обязательно разберитесь, почему на прямой семь точек, а на окружности их пять. Так как дуги – это части окружности, то длины некоторых из них будут выражены через число (объясните почему).Откладывая в положительном и отрицательном направлениях от начала отсчета прямой угол получим точки, соответствующие числам … и (объясните почему); Выполнив поворот на развернутый угол в положительном и отрицательном направлениях получаем две совпадающие точки окружности с координатами… и . x y 0 1 1 0 1 Напомним, что декартова система разбивается координатными осями на четыре координатные четверти – I, II, III и IV.Задание 2. Определите границы координатных четвертей через углы поворота в радианной мере, взятых в положительном направлении. Задание 3. Выполните предыдущее задание, при условии, что выбирается отрицательное направление углов поворота. Задание 4. Какой координатной четверти принадлежит точка окружности с координатой 6,28? x y 0 1 1 0 1 I II III IV Отметив на окружности точки с абсциссой 0,5 мы получим точки, соответствующие числам … и (объясните почему); Аналогично, получаются точки окружности с координатами ; . Обратите внимание на симметричность относительно оси Ox полученных точек! x y 0 1 1 0 1 0,5 0,5 Отметив на окружности точки с ординатой 0,5 мы получим точки, соответствующие числам … и (объясните почему); Аналогично, получаются точки окружности с координатами ; . Обратите внимание на симметричность относительно оси Oy полученных точек! x y 0 1 1 0 1 0,5 0,5 Графики функций y=x и y=x прямые, являющиеся биссектрисами координатных четвертей.Постройте графики функций y=x и y=x. Подумайте, какие углы поворота соответствуют точкам пересечения этих прямых с тригонометрической окружностью?... …Ответ: ; ; ; . x y 0 1 1 0 1 Отметим на тригонометрической окружности точку А, соответствующую произвольному острому положительному углу поворота .Если добавить полный поворот к углу α , то мы снова окажемся в той же точке А. Но теперь ее координата равна (подумайте)… . Вообще, любую точку окружности можно получить поворотом на угол, вида α+2n, где n и α[0;2). x y 0 1 1 0 A(α) A(α+2) Итогом нашей предыдущей работы является данная окружность, на которой отмечены наиболее часто встречающиеся в различных таблицах углы.Примечание. На чертеже отмечены только положительные углы поворота. Задание 5. Найдите координаты всех точек, отмеченных на данной окружности (указание: рассмотрите различные прямоугольные треугольники с гипотенузой-радиусом (см.рис.) и примените теорему Пифагора ; помните о симметричности точек). x y 0 1 1 0 1 0,5 0,5 -0,5 -0,5 Ответы и решения.Задание 2. - I четверть, - II четверть, - III четверть, - IV четверть. Задание 3. - I четверть, - II четверть, - III четверть, - IV четверть Ответы и решения.Задание 4. 6,28IV (см.рис.) 6,28<2 (обязательно разберитесь в совпадении цвета цифр и некоторых частей окружности)! x y 0 1 1 0 1 2 3 4 5 6 2 Ответы и решения.Задание 5. Домашнее задание1) Выучить формулы перевода из градусной меры угла в радианную и обратно 2) Переведите в радианную меру углы: 75, 15, 130, 220, 340 |