Теорема Виета
Скачать 2.37 Mb.
|
«Теорема Виета»По праву достойна в стихах быть воспета О свойствах корней теорема Виета Тема урока: Цели урока:Познакомится с теоремой Виета Научится применять её для решения квадратных уравнений и для проверки найденных корней Предоставить каждому ученику возможность проверить свои знания и повысить их уровень Вспомним:Какое уравнение называется квадратным? Какие виды квадратных уравнений вы знаете? Какое уравнение называется неполным квадратным? Какое уравнение называется приведенным? Как называются коэффициенты квадратного уравнения? Какое выражение называется дискриминантом? От чего зависит количество корней квадратного уравнения? Решить устно уравнениях2 – 36 = 0 х1 = 6, х2 = -6 у2 +49 = 0 нет решения с2 – 7с = 0 х1 = 0, х2 = 7 5х2 = 0 х = 0 Составьте уравнения,корнями которых являются числа: а) 0 и 3 х² - 3х = 0 б) 7 и – 7 х² - 49 =0 в) – 5 и 5 (х + 5)·(х - 5) = 0 г) 2 и 2 (х - 2)·(х - 2) = 0 Проблемы:1. Решить устно уравнения: х2 – 2012х + 2011 = 0 х2 – 377х + 750 = 0 2. Составить полное квадратное уравнение, корнями которого являются числа: 2 и 3; 157 и 1. Поиск:
ОткрытиеТеорема Виета Сумма корней приведенного квадратного уравнения х2+p x + q = 0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Х1+ Х2= -Р Х1 • Х2 = q Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый ученый Франсуа Виет (1540-1603)Франсуа Виет был по профессии адвокатом и много лет работал советником короля. В 1591 г. он ввел буквенные обозначения для коэффициентов при неизвестных в уравнениях, что дало возможность записать общими формулами корни уравнения и свойства. Его часто называют «Отцом алгебры». Вейерштрасссказал, что нельзя быть математиком, не будучи поэтом в душе. Нет формул важней для приведённого уравнения: -p – это сумма его корней, q – его корней произведение. Применение теоремы Виета
Применение теоремы ВиетаПроверка найденных корней квадратных уравнений. Проверяем домашнюю работу 1. х2 – 2х – 15=0 х1=5 х2= - 3 По формулам Виета х1 + х2 = 2 х1х2 = - 15 Проверяем: 5 + ( - 3) = 2 5 ·( - 3) = - 15 Применение теоремы ВиетаПроверка найденных корней квадратных уравнений. Проверяем домашнюю работу 2. у2 – 4у – 96 =0 у1= - 8 у2=12 По формулам Виета у1 + у2 =4 у1у2 = - 96 Проверяем: - 8 + 12 = 4 - 8 · 12 = - 96 Угадываем корниХ2 + 3Х – 10 = 0 Х1·Х2 = – 10, значит корни имеют разные знаки Х1 + Х2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х1 = – 5, Х2 = 2 Применение теоремы Виета Составляем квадратное уравнениеПусть Х1 = 2, Х2 = – 6 – корни квадратного уравнения Х1 + Х2 = – 4, Х1·Х2 = – 12, тогда по теореме Виета Х2 + 4Х – 12 = 0 – искомое квадратное уравнение Применение теоремы Виета Решите сами !x2 – 6x + 8 = 0 x2 –10x +21 = 0 x2 –10x +25 = 0 x2 –8x – 20 = 0 x2 –7x +12 = 0 x2 + 9x +14 = 0 x2 – 7x -1 8 = 0 x2 – 3x -2 8 = 0 x2 + x - 6 = 0 Ответ: 2; 4 Ответ: 3; 7 Ответ: 5 Ответ: -2; 10 Ответ: 3; 4 Ответ: - 2; - 7 Ответ: 9; - 2 Ответ: 7; - 4 Ответ:- 3; 2 Проблемы:1. Решить устно уравнения: х2 – 2012х + 2011 = 0 х2 – 377х + 750 = 0 2. Составить полное квадратное уравнение, корнями которого являются числа: 2 и 3; 157 и 1. Тестирование1) Укажите в квадратном уравнении х²+3-4х = 0 второй коэффициент. 2) В квадратном уравнении 7х-5+х²=0 второй коэффициент взятый с противоположным знаком равен: 3) Сумма и произведение корней уравнения х²+7х-1= 0 равны: а) 1 б) - 4 г) 3 в) 4 а) 1 г) - 7 в) 5 б) - 4 а) х1+х2=7 х1·х2=1 б) х1+х2=1 х1·х2=7 в) х1+х2=-7 х1·х2=-1 г) х1·х2=7 х1+х2=-1 Тестирование4) Если число 11 корень уравнения х²-13х+22=0, то второй корень равен: 5) Если 2 корень уравнения х²-6х+q=0, то q равен: 6)Не решая уравнение х²-9х-4=0, определите знаки корней уравнения. 7)Для уравнения -9х²+2х-4=0 приведенным является уравнение вида: а) 13 б) -11 в) 2 г) -2 а) 12 б) 8 в) -12 г) 6 а) одинаковые б) разные в)оба положительные г)оба отрицательные В.В. Маяковский«Если звёзды зажигают, значит, это кому-нибудь нужно» найти сумму и произведение корней квадратного уравнения, не решая его зная один корень, найти другой найти корни подбором определить знаки корней уравнения проверить, правильно ли найдены корни уравнения Зачем нужна теорема Виета? С её помощью можно : Чосер – английский поэт средних веков, сказал:Выучив теорему Виета, вы тоже разрешите для себя уйму всяких проблем . “Посредством уравнений, теорем, Я уйму разрешил проблем”. Домашнее задание:№ 29.1, № 29.2(а,б), № 29.6(а,б), № 29.9(а,б) Реферат «Франсуа Виет» |