Главная страница

Курсовая на тему Термоэлектрическое охлаждение элементов и устройств ЭВС . РС-71. Курсовая на тему Термоэлектрическое охлаждение элементов и устр. Термоэлектрическое охлаждение элементов и устройств эвс


Скачать 414.78 Kb.
НазваниеТермоэлектрическое охлаждение элементов и устройств эвс
АнкорКурсовая на тему Термоэлектрическое охлаждение элементов и устройств ЭВС . РС-71.docx
Дата28.01.2018
Размер414.78 Kb.
Формат файлаdocx
Имя файлаКурсовая на тему Термоэлектрическое охлаждение элементов и устр.docx
ТипКурсовая
#14991
КатегорияПромышленность. Энергетика
страница6 из 8
1   2   3   4   5   6   7   8

Значения коэффициента Пельтье для различных пар металлов


Железо-константан

Медь-никель

Свинец-константан

T, К

П, мВ

T, К

П, мВ

T, К

П, мВ

273

13,0

292

8,0

293

8,7

299

15,0

328

9,0

383

11,8

403

19,0

478

10,3

508

16,0

513

26,0

563

8,6

578

18,7

593

34,0

613

8,0

633

20,6

833

52,0

718

10,0

713

23,4

Коэффициент Пельтье, представляющий собой важную техническую характеристику материала, как правило, не измеряют, а вычисляют через коэффициент Томсона: П = t x T, где П - коэффициент Пельтье, t - коэффициент Томсона, T - абсолютная температура.

Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а затем и различных областей техники.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается и выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника, в результате чего происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а полной энергии.

Эффект Пельтье, как и многие термоэлектрические явления, особенно сильно выражен в цепях, составленных из полупроводников с электронной (n-тип) и дырочной проводимостью (p-тип). Такие полупроводники, как известно, называются соответственно полупроводниками n- и p-типа.

Рассмотрим термоэлектрические процессы, происходящие при контакте таких полупроводников. Допустим, направление электрического поля таково, что электроны в электронном и дырки в дырочном полупроводнике будут двигаться навстречу друг другу. Электрон из свободной зоны полупроводника n-типа после прохождения через границу раздела попадает в заполненную зону полупроводника p-типа и там рекомбинирует с дыркой. В результате рекомбинации высвобождается энергия, которая выделяется в контакте в виде тепла (рис. 1).

d:\учеба\4 курс\7 семестр\методы и устройства испытания эвс\курсовая\ris1.gif

Рис. 1. Выделение тепла Пельтье в контакте полупроводников n- и p-типа.

При изменении направления электрического поля на противоположное электроны и дырки в полупроводниках соответствующего типа будут двигаться в противоположные стороны. Дырки, уходящие от границы раздела, будут пополняться в результате образования новых пар при переходах электронов из заполненной зоны полупроводника p-типа в свободную. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Электроны и дырки, образующиеся при рождении таких пар, увлекаются электрическим полем в противоположные стороны. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар, и в результате в контакте поглощается тепло (рис. 2).

d:\учеба\4 курс\7 семестр\методы и устройства испытания эвс\курсовая\ris2.gif

Рис. 2. Поглощение тепла Пельтье в контакте полупроводников n- и p-типа.
1   2   3   4   5   6   7   8


написать администратору сайта