Главная страница

делать. The practical implementation of artificial intelligence technologies in medicine


Скачать 64.99 Kb.
НазваниеThe practical implementation of artificial intelligence technologies in medicine
Анкорделать
Дата02.10.2022
Размер64.99 Kb.
Формат файлаdocx
Имя файлаArtificial intelligence in sustainable energy industry.docx
ТипДокументы
#709299
страница8 из 10
1   2   3   4   5   6   7   8   9   10
1   2   3   4   5   6   7   8   9   10

Box 2. Examples of artificial intelligence technologies that have received FDA approval in the United States


  • Arterys: Aids in finding lesions within pulmonary computed tomography (CT) scans and liver CT and magnetic resonance imaging (MRI) scans using AI to segment lesions and nodules. This is the first FDA-approved deep learning clinical platform.




  • IDx-DR:Provides automatic detection of more than mild diabetic retinopathy in adults 22 years of age or older diagnosed with diabetes who have not been previously diagnosed with diabetic retinopathy. This is meant to be used in primary care settings with subsequent referral to an eye specialist if indicated and is the first autonomous AI diagnostic system, as no clinician interpretation is needed before a screening result is generated.




  • Guardian Connect (Medtronic):Continuously monitors glucose and sends collected data to a smartphone app. This uses International Business Machines (IBM) Watson technology to predict major fluctuations in blood glucose levels 10–60 minutes in advance.

Вставка 2. Примеры технологий искусственного интеллекта, получивших одобрение FDA в США


  • Arterys: помогает в обнаружении поражений при компьютерной томографии (КТ) легких, а также при КТ печени и магнитно-резонансной томографии (МРТ) с использованием ИИ для сегментации поражений и узлов. Это первая клиническая платформа глубокого обучения, одобренная FDA.



  • IDx-DR: Обеспечивает автоматическое выявление диабетической ретинопатии более чем легкой степени у взрослых в возрасте 22 лет и старше с диабетом, у которых ранее не была диагностирована диабетическая ретинопатия. Этот прибор предназначен для использования в учреждениях первичной медицинской помощи с последующим направлением к офтальмологу, если есть показания. Это первая автономная диагностическая система с искусственным интеллектом, поскольку до получения результатов скрининга не требуется интерпретация врача.




  • Guardian Connect (Medtronic): постоянно отслеживает уровень глюкозы и отправляет собранные данные в приложение для смартфона. При этом используется технология International Business Machines (IBM) Watson для прогнозирования основных колебаний уровня глюкозы в крови на 10–60 минут вперед.

Box 3. The case study of IDx-DR


The case of IDx-DR highlights one of the earliest successes of an AI-based technology completing the regulatory process in the United States. IDx-DR is a software program designed to perform screening for diabetic retinopathy at primary care offices, or more generally, in contexts where a provider specifically trained in eye care (e.g., an optometrist or ophthalmologist) is not readily available. The software program analyzes digital color photographs of a patient’s retinas using an AI algorithm to provide a screening result—either (i) “more than mild diabetic retinopathy detected; refer to an eye care professional” or (ii) “negative for more than mild diabetic retinopathy; rescreen in 12 months” (https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm). Although other devices with an AI component have been previously approved (Box 2), this is the first to provide a screening result without an image interpretation provided by a clinician: it is the first autonomous AI diagnostic system. Furthermore, instead of going through the traditional pathway, IDx-DR underwent the Automatic Class III or De Novo premarket pathway and also achieved Breakthrough Device designation. The De Novo pathway is for novel medical devices for which general controls provide reasonable assurance of safety and effectiveness (https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/PremarketSubmissions/ucm462775.htm); essentially, it is an alternative regulatory pathway for low- to moderate-risk devices. In the review process, the FDA based its clearance on the performance of the algorithm in a clinical trial of 900 patients (NCT02963441), which was conducted at ten primary care sites across the United States. The FDA was closely involved with advising and guiding the company throughout the clinical trial and in defining meaningful endpoints. This early involvement and active collaboration between the device manufacturer and the FDA undoubtedly facilitated the review. Early engagement with the FDA and pursuance of the De Novo pathway likely represents an advantageous strategy for other manufacturers of AI-based technologies to consider as well.


написать администратору сайта