К.Р. растворы. Растворы. Типы буровых растворов и условия их применения в опросы для изучения
Скачать 315 Kb.
|
6.1.3 Водные растворы ПАВ Наиболее приемлемым с экономической и технологической точки зрения методом обеспечения сохранности продуктивных пластов нужно признать использование синтетических ПАВ, изменяющих физико-химическую природу фильтрата, что позволяет вместе с другими технологическими приемами обеспечить наименьшее снижение проницаемости нефтенасыщенных коллекторов. Изучению влияния ПАВ на процессы адсорбции и смачиваемости горных пород посвящено достаточно большое количество работ [21-24]. Синтетические ПАВ должны удовлетворять следующим требованиям: полностью растворяться в пластовой и технической воде; снижать межфазное натяжение на границе раздела «фильтрат бурового раствора – нефть» при возможно малых концентрациях; повышать смачиваемость поверхности коллектора нефтью, т.е. обладать гидрофобизирующими свойствами; незначительно адсорбироваться на поверхности кварцевых, карбонатных и глинистых пород; предупреждать образование в ПЗП эмульсии, а если она образуется, то снижать ее стойкость; предупреждать коагуляцию твердой фазы бурового раствора и шлама и не допускать выпадения их в осадок; способствовать вскрытию пласта при минимальных затратах; не оказывать влияния на основные параметры раствора. Добавки ПАВ к технической воде позволяют: - Интенсифицировать процесс разрушения горных пород на забое. Это объясняется следующим. В процессе бурения горная порода в зоне контакта с долотом покрывается сетью макро- и микротрещин, которые после снятия нагрузки смыкаются и таким образом, работа, затраченная на их образование в последующем не используется для облегчения разрушения горных пород. При адсорбции ПАВ на поверхности таких микротрещин, их смыкание предотвращается, обеспечивая тем самым как бы понижение прочности горных пород в зоне предразрушения (эффект П.А. Ребиндера, 1928 г.). - Снизить силу трения между стенками скважины (аксиальное трение) и бурильными трубами, а также износ последних. Материал бурильных труб и горные породы гидрофобны, поэтому молекулы ПАВ адсорбируются на них своими гидрофобными (углеводородными) частями. Образующиеся в результате граничные пленки («молекулярный ворс») способны значительно уменьшить трение и износ контактирующих в скважине поверхностей. - Повысить износостойкость породоразрушающего инструмента за счет образования аналогичной граничной пленки на вооружении и опорах долот. В практике бурения наиболее часто применяют водные растворы ОП-7, ОП-10, сульфонола и превоцела. Область применения водных растворов ПАВ та же, что и у технической воды. Однако их преимущества говорят о необходимости и целесообразности добавок ПАВ к технической воде (полимерным и другим растворам) практически во всех случаях, когда это возможно (исключение: бурение в зонах поглощений и вскрытие водоносных горизонтов хозяйственно-питьевого назначения). ПАВ рекомендуется вводить в буровой раствор и перед вскрытием нефтяных пластов. 6.1.4 Солевые буровые растворы Водные растворы солей (NaCl, KCl, CaCl2, MgCl2) могут применяться в качестве очистных агентов в следующих случаях: - при бурении в многолетнемерзлых породах (ММП); - при бурении в отложениях солей; - для глушения скважин при капитальном ремонте (в качестве жидкости глушения); - в качестве буферной жидкости при тампонировании скважин. При бурении скважин в ММП (распространены более чем на половине территории России, мощность их доходит до нескольких сотен метров, температура достигает – минус 9 ºС, обычно - минус 4-6 ºС) применяются водные растворы NaCl, реже CaCl2. Концентрация соли в растворе выбирается в соответствии с температурой ММП. Незамерзающие водные растворы солей обладают такими же свойствами, как и техническая вода, но в отличие от воды имеют более высокую плотность и повышенное коррозионное воздействие на металл. Они не пригодны для бурения в мерзлых породах, сцементированных льдом, так как вызывают его таяние. Водные растворы солей рационально применять только при бурении плотных, устойчивых, «сухих» мерзлых пород. При проходке мощных пластов солей во избежание образования каверн применяют насыщенные растворы этих солей: - при проходке галита (NaCl) - раствор NaCl; - при проходке сильвина (KСl) - раствор KCl; - при проходке бишофита (MgCl2×6H2O) - раствор MgCl2; - при проходке карналлита (КMgCl3×6H2O) - раствор (КСl + MgCl2). С повышением температуры растворимость солей увеличивается. Поэтому в глубоких скважинах циркулирующая жидкость в призабойной части способна растворять соль, а в верхней части скважины, где её температура понижается - выделять соль в виде кристаллов (рекристаллизация). Таким образом, водные растворы солей могут использоваться при проходке пластов солей, залегающих лишь в верхних интервалах скважин. 6.2 Гомогенные углеводородные растворы К гомогенным буровым промывочным жидкостям относятся нефть и дизельное топливо. Обычно нефть и нефтепродукты определенного состава используются в качестве: дисперсионной среды растворов на углеводородной основе (РУО) и гидрофобных эмульсий; дисперсной фазы гидрофильных эмульсий (в качестве противоприхватной добавки наряду с неполярными жидкостями растительного и животного происхождения); самостоятельных очистных агентов. В качестве самостоятельных очистных агентов нефть и дизтопливо используются крайне редко. Из нефтепродуктов наиболее широко используется дизельное топливо (чаще чем сырая нефть) марок ДЛ и ДЗ (летнее и зимнее). 6.3 Гомогенные газообразные очистные агенты Использование газообразных агентов или пневматического способа удаления продуктов разрушения вместо гидравлического позволяет существенно увеличить механическую скорость бурения (в 4 - 5 раз в твердых и в 2 - 3 раза в мягких породах) и проходку на долото (в 2 - 5 раз). Столь существенные преимущества продувки объясняются отсутствием статическое давление на забой скважины (rг = 0,6…18 кг/м3); более интенсивной очисткой забоя вихревым (высокотурбулентным) потоком огромной скорости. Кроме того, газообразные агенты позволяют сохранить естественные свойства отбираемого керна, так как исключается его размыв, растворение, загрязнение; без осложнений проходить зоны, катастрофически поглощающие буровой раствор. Из-за низкой плотности газообразных агентов и практическом отсутствии давления на вскрываемые пласты существенно увеличивается продуктивность пластов с низким пластовым давлением. Под действием газа практически исключается набухание, растворение и обвалы горных (глинистых) пород, естественная структура которых нарушается при контакте с буровым раствором на водной основе. Газ позволяет успешно бурить интервалы ММП и льда так как, теплоемкость воздуха в 4 раза ниже теплоемкости воды, поэтому его легко и быстро можно охладить до нулевой и даже до отрицательной температуры. Применение газообразных агентов экономически оправданно так как продувка газом позволяет улучшить условия труда буровой бригады (отпадает необходимость в приготовлении бурового раствора и растворов химреагентов, не нужна циркуляционная и очистная системы, не перемерзает нагнетательная система и т.д.). Несмотря на перечисленные достоинства и высокую эффективность (производительность буровых работ возрастает в 1,5 - 2 раза), объемы бурения с использованием пневматического способа удаления продуктов разрушения весьма незначительны (» 1…2 %). Объясняется это тем, что газообразные агенты имеют и целый ряд существенных недостатков: - увеличивается стоимость наземного оборудования. Для бурения с продувкой необходимы компрессор высокого давления; специальные нагнетательная и выкидная линии, пылесборники, влагомаслоотделитель, КИП и т. д. Кроме этого продувка возможна только при роторном способе бурения. - повышается износ бурильных труб вследствие окислительного действия газообразной среды (при использовании в качестве очистного агента сжатого воздуха), абразивного действия смеси «газ + шлам», высоких значений коэффициента трения. - отсутствует возможность регулирования противодавления на вскрываемые пласты, в связи с чем значительно возрастает опасность флюидопроявлений, сложно бурить в потенциально неустойчивых породах. - значительно усложняется процесс бурения при притоках в скважину воды. В этом случае шлам становится влажным, налипает на буровой инструмент и стенки скважины, в результате чего образуются сальники. При незначительных водопритоках производят гидрофобизацию контактирующих поверхностей непрерывными добавками ПАВ (0,1…0,2 % к предполагаемому объему притока воды). - ограничивается возможность проведения геофизических работ. Для проведения электрокаротажа и перфорирования обсадной колонны скважина должна быть заполнена жидкостью. Таким образом, газообразные агенты экономически целесообразно использовать при проходке зон катастрофического поглощения, интервалов ММП и льда, при бурении в безводных и засушливых районах, при вскрытии продуктивных горизонтов с низким пластовым давлением (со строгим соблюдением правил безопасности). При наличии в разрезе газо- и нефтесодержащих пластов в качестве очистного агента необходимо применять природный газ и, лучше всего, от газовых магистралей промысла. При отсутствии газопровода обычно применяют азот или отработанный газ, полученный от ДВС, установленных на буровой. 6.4 Гетерогенные водные растворы с твердой дисперсной фазой 6.4.1 Нестабилизированные глинистые суспензии и суспензии из выбуренных пород Эти растворы представляют собой водные суспензии, образованные в процессе бурения путем "самозамеса" из разбуриваемых пород. Нестабилизированные глинистые суспензии и суспензии из выбуренных пород применяют в основном при бурении с поверхности в сравнительно устойчивом разрезе, сложенном малопроницаемыми породами. В зависимости от типа исходной глины и состава разбуриваемых пород такие растворы имеют в среднем следующие показатели: плотность 1050-1240 кг/м3, условная вязкость 25-50 с, показатель фильтрации, СНС и рН не регламентируются [2]. В процессе бурения показатели не стабилизированных глинистых суспензий из выбуренных пород регулируются разбавлением водой. Применение глинистых растворов обусловлено относительной доступностью и дешевизной сырья для их приготовления, их особыми, в какой-то мере универсальными, свойствами: способностью образовывать малопроницаемую фильтрационную корку на стенках скважины; способностью удерживать во взвешенном состоянии частицы выбуренной породы и утяжелителя; возможностью регулирования реологических, структурно - механических и фильтрационных свойств в широком диапазоне. Для бурения под кондуктор в мерзлых горных породах разработан и применяется простой по составу специальный раствор. К хорошо прогидратированному бентонитовому раствору добавляют 2-3 кг/м3 КСl (NaCl). От ввода соли в таком малом количестве раствор несколько загустевает без изменения водоотдачи и приобретает, таким образом, мгновенные структурообразующие свойства. Значения СНС данного раствора через 10 сек, 1 минуту и 10 минут покоя являются достаточно высокими и мало отличаются между собой. При его использовании у стенок скважины, особенно в кавернах, образуются застойные зоны, за счет чего резко снижается темп растепления стенок ствола скважины, уменьшается размер каверн и интенсивность разбавления раствора. Опыт показывает, что при разбуривании толщимерзлых пород почти не требуются дополнительной обработки раствора бентонитом, снижается расход материалов и снижаются затраты времени на осложнения, связанные с кавернообразованием. Состав раствора в 1 м3 содержится (в кг): бентонита 50, Na2CO3- 1, NaOH -1. Свойства раствора: плотность - 1040 кг/м3, пластическая вязкость - 6 сПз, ДНС = 60 дПа, СНС = 0/1/10, 70/100/180 дПа, водоотдача (API) -14,5 см3/30мин, рН = 9,5 6.4.2 Гуматные растворы К этому виду относится буровой глинистый раствор, стабилизированный углещелочным реагентом (УЩР). Применяют такой раствор при бурении в сравнительно устойчивом разрезе, в котором отсутствуют набухающие и диспергирующиеся глинистые породы. Допустимая минерализация для гуматных растворов не более 3 %, термостойкость их в этих условиях не превышает 120 - 140 0С. В отсутствие минерализации фильтрация гуматных растворов остается небольшой даже при температуре 200 0С, однако усиливается загустевание раствора [2]. В зависимости от коллоидальности глины и жесткости воды на приготовление 1 м3 гуматного раствора требуется (в кг): глины 50-200, сухого УЩР 30-50, Na2CO3 3-5 (при необходимости), воды 955-905. Утяжелитель добавляют в случае необходимости увеличения плотности раствора. При этом обеспечивается возможность получения растворов со следующими свойствами: плотность 1030-2200 кг/м3, условная вязкость 20-60 с, СНС1= 18-60дПа, СНС10 = 36-120 дПа, показатель фильтрации 4-10 см3/30 мин, рН = 9-10 [2]. На повторные обработки в процессе бурения требуется 3-5 кг УЩР на 1 м3 раствора. УЩР совместим с большинством реагентов (полиакрилатами, лигносульфонатами, КМЦ). для предотвращения загустевания при забойных температурах выше 100 °С раствор обрабатывают УЩР в сочетании с хроматами [0,5-1 кг на 1 м3 раствора)[2]. 6.4.3 Лигносульфонатные растворы Лигносульфонатные растворы — буровые глинистые растворы, стабилизированные лигносульфонатными реагентами (иногда в сочетании с УЩР). Используются при разбуривании глинистых отложений, гипсов, ангидритов и карбонатных пород. Главной функцией лигносульфонатных реагентов является понижение вязкости, основанное на сочетании стабилизирующего и ингибирующего эффектов. Ингибирующее действие кальциевой ССБ в пресных растворах мягче, чем действие извести. Раствор термостоек до 130 0С. При бурении в глинистых разрезах наиболее эффективно разжижается раствор при комбинированных обработках ССБ и УЩР. В зависимости от качества исходной глины на приготовление 1 м3 лигносульфонатного раствора требуется (в кг): глины 80-200, ССБ 30-40, УЩР 10-20, NaOH 5-10, пеногасителя 5-10, воды 940-900, утяжелителя - до получения раствора необходимой плотности. Указанные пределы компонентного состава обеспечивают получение растворов с показателями: плотность 1060 -2200 кг/м3, условная вязкость 18 - 40 с, показатель фильтрации 5-10 см3/30 мин, СНС1 = 6-45 дПа, СНС10= 12-90 дПа, рН = 8-10 [2]. 6.4.4 Хромлигносульфонатные растворы [2] Это буровые глинистые растворы, стабилизированные хромлигносулъфонатными (феррохромлигносульфонатнымй) реагентами: окзил, ФХЛС, КССБ-4 или указанными реагентами в сочетании с полимерами (КМЦ, М-14, метас, гипан. Они предназначены для разбуривания глинистых и аргиллитоподобных пород при высоких забойных температурах. Отличаются более высокой по сравнению с гуматными и лигносульфонатныма растворами устойчивостью к загущающему действию глин и более высокой термостойкостью (до 180 0С). Наибольший разжижающий эффект достигается при рН бурового раствора 9 — 10. На приготовление 1 м3 раствора, только на основе хромлигносулъфонатных реагентов (в пересчете на сухое вещество), необходимо (в кг): глины 80 — 200, окзила (или ФХЛС) 10-20, КССБ-4 40 - 30, NaOH 2-5, Na2Cr2O, или (или К2Сr2О7) 0,5-1, пеногасителя 3-5, воды 940-900, утяжелителя-до получения требуемой плотности. Показатели раствора: плотность 1060 - 2200 кг/м3, условная вязкость 18 - 40 с, показатель фильтрации 4-10 см3/30 мин, СНС1 = 6-45 дПа, СНС10 = 12-90 дПа, рН = 9-10. Для приготовления 1 м3 хромлигносульфонатного раствора, в состав которого входят полимерные реагенты, в пересчете на сухие вещества необходимо (в кг): глины 40-100, NaOH 3-5, полимерного реагента (КМЦ, М-14, метас и др.) 3-5, окзила 30 - 50, хроматов 0,5-1, воды 965 — 925, утяжелителя-до получения раствора необходимой плотности. Показатели раствора: плотность 1030 — 2200 кг/м3, УВ = 25 - 60 с, показатель фильтрации 3-6 см3/30 мин, СНС1 = 18-60 дПа, рН = 8-9. В качестве основы хромлигносульфонатного раствора могут быть использованы глинистая суспензия, приготовленная из предварительно гидратированной и диспергированной глины, или ранее применявшийся раствор. В хромлигносулъфонатный, как и в лигносульфонатный, можно перевести любой пресный раствор. Регулирование показателей хромлигносульфонатного раствора аналогично лигносульфонатному. Показатель фильтрации регулируется добавками полимерного реагента (0,5— 1 кг реагента на 1 м3 бурового раствора). Известен и широко применяется полимер – бентонитовый раствор на основе лигносульфонатов, который содержит два полимерных реагента ПАА И КМЦ. Для приготовления 1 м3 раствора требуется в кг : бентонит 30 – 40; Na2CO3 - 1,0; NaOH 1,0; КМЦ 3 – 5; СМАЗКА 3 – 5; ФХЛС 1 – 2; ПАА 0,2 - 0,5; СаСО3 50 – 100. Получаемый раствор имеет следующие свойства: плотность 1040 - 1100 кг/м3, условная вязкость 20 - 30 сек, пластическая вязкость 10 - 18 сПз; ДНС = 40 – 80 дПа, СНС1/10 = 10-20/20-40 дПа, водоотдача 7 - 9см3/30мин (API), рН = 8 – 9. 6.4.5 Полимерные недиспергирующие буровые растворы Это водные растворы высокомолекулярных полимеров (акрилатов, полисахаридов), структурированные малыми добавками бентонита, или без него. Эти растворы предупреждают диспергирование разбуриваемых пород и повышение содержания твердой и глинистой фаз в растворе. Характеризуются низким содержанием глинистой фазы, что способствует улучшению показателей бурения (повышению механической скорости проходки и проходки на долото). Главная проблема применения полимерных недиспергирующих растворов - предотвращение обогащения их выбуренной породой. Поэтому в состав раствора вводят специальные реагентыфлокулянты селективного действия (н-р, гидролизованный полиакриламид — ПАА), флокулирующие кальциевую глину и грубодисперсную фракцию выбуренной породы. Термостойкость полимерных недиспергирующих растворов зависит от применяемых полимеров. Наибольшую термостойкость (до 250 °С) имеют растворы на основе акриловых полимеров. Полимерные недиспергирующие растворы предназначены для массового бурения эксплуатационных и разведочных скважин в отложениях, характеризующихся высоким содержанием глин, в том числе (до 80 %) высококоллоидальных и потенциально неустойчивых, и в крепких, устойчивых карбонатно-глинистых разрезах, а также для вскрытия продуктивных пластов. Для приготовления 1 м3 полимерного недиспергирующего раствора с низким содержанием высококоллоидной глинистой фазы (в пересчете на сухое вещество требуется (в кг): глины 40-50, полимера (КМЦ, М-14, метас) 4-5, воды 810-350, ПАА 25-50 (0,5%-ного раствора), нефти 100-80, утяжелителя — до получения раствора требуемой плотности. Показатели раствора: плотность 1030 - 2000 кг/м3, УВ = 20 - 60 с, показатель фильтрации 5-8 см3/30 мин, СНС, = 12-60 дПа, СНС10 = 24-90 дПа, рН = 8-9. Один из основных показателей качества полимерного недиспергирующего раствора - низкое содержание глинистой фазы. Объемная доля которого не должна превышать 1,5 - 2%. 6.4.6 Гетерогенные ингибирующие буровые растворы на водной основе Такие системы созданы для предупреждения аварий и осложнений, связанных с осыпями и обвалами неустойчивых глин. Этот вид осложнений при бурении вызывает наибольшие потери, которые нередко заканчиваются ликвидацией скважин, поэтому трудно переоценить роль буровых растворов в решении этой нелегкой задачи. Поведение потенциально неустойчивых глин определяется двумя основными факторами - физико-химическим и физическим. Первый фактор является основным, и его сущность заключается в характере (механизме) физико-химического взаимодействия бурового раствора и его фильтрата с разбуриваемыми глинами. Проявление так называемого физического фактора заключается в выпучивании глин в скважину под действием аномально высоких поровых давлений в глинах или горного давления в зонах тектонических нарушений, когда глинистые породы «перемяты» при больших углах падения пород. Физико-химическое взаимодействие глин с буровыми растворами (фильтратом) начинается с процессов их гидратации кристаллов глинистых минералов и набухания в микротрещинах. Расклинивающее давление кристаллического набухания проявляется на расстоянии, соизмеримом с толщиной гидратной оболочки и, чем ближе к поверхности, тем выше давление набухания, величина которого достигает тысяч атмосфер. Физическое противостояние таким силам (повышение плотности раствора) практически не реально. Однако, подавить процесс набухания глин можно физико-химическими методами, именно этот процесс и называется ингибированием. Он достигается применением в растворах электролитов (солей) в определенных концентрациях, превышающих порог коагуляции. Из числа известных растворов этого типа (гипсовый, хлоркальциевый) наиболее эффективным является калиевый раствор. Уникальность этого раствора заключается в том, что ион калия, в сравнение с другими катионами, обладает особым ингибирующим действием. Он, имея малый размер, подавляет процесс набухания глин, адсорбируясь в достаточном количестве на базальных плоскостях, и полностью нейтрализует заряд поверхности. В результате такого химического взаимодействия происходят изменения минералогической природы глин, которые превращаются в водонечувствительный минерал – довольно хорошо окристаллизованную гидрослюду. Процесс практически необратим. Интенсивность процесса насыщения глины ионами калия зависит от концентрации данных ионов, примесей других солей, температуры и величины рН. Дешевым и доступным источником ионов калия является хлористый калий. Оптимальная концентрация этого ингибитора в растворе колеблется от 5 до 12% и зависит от физико-химических свойств разбуриваемых глин и концентрации других солей (неизбежные примеси), которые замедляют действие ионов калия. Для эффективного ингибирования необходимо, чтобы концентрация хлорида калия не менее, чем в 3 раза превышала концентрацию других солей (NaCl, Na2SO4, CaSO4). Так, если калиевый раствор готовится на морской воде (концентрация солей 3-3,5%), содержание хлористого калия в растворе должно быть 10-12%. Важным условием является величина рН, которую необходимо поддерживать на уровне 9-10. Интенсивность ингибирования возрастает с повышением температуры. Все указанные условия выполнимы в процессе бурения, поэтому калиевые растворы широко и успешно применяются. В последние годы разработан ряд дополнительных органических ингибиторов, усиливающих действие калиевого раствора. Это - полиакриламид низкого и высокого молекулярного веса (Праестол, Сайдрилл и т.д.), сульфированный асфальт и гликоли различного строения и молекулярного веса (Гликойл, Ск-полиэфирный, АДН и т.д.). Из их числа наиболее эффективно усиливают ингибирующую способность калиевого раствора гликоли за счет дальнейшего и более глубокого снижения степени гидратации глин. Благодаря применению таких систем полностью удается избежать осыпей неустойчивых глин даже в особо сложных геологических условиях. Для приготовления и регулирования свойств калиевых растворов используются стандартные солестойкие реагенты, наиболее эффективными из них являются полисахариды семейства ПАЦ –полианионные целлюлозы (ВВ-высоковязкие, СВ, НВ – средне, низковязкие). Не менее важным в проблеме устойчивости глин является и так называемый физический фактор. Действие этого фактора проявляется при бурении в условиях АВПД и нарушенных, перемятых зонах, когда осыпи горных пород происходят под воздействием физических сил, а гидростатического столба жидкости недостаточно для сдерживания этого процесса. Интенсивность этих осложнений может быть различной в зависимости от геологических условий. Предупредить осыпи в этих случаях удается путем ступенчатого повышения плотности бурового раствора (по 0,05-0,1 г/см3). Как правило, горно-геологические условия бурения бывают, известны, и требуемая плотность раствора регламентируется в программе по буровым растворам или в программе на бурение скважины. Однако, очень важно распознавать причину осложнений. Физико-химическое взаимодействие глин с буровым раствором происходит постоянно, а проявление физических сил наблюдается только в особых геологических условиях. В большинстве случаев нормальной плотности бурового раствора (1120-1200 кг/м3) бывает достаточно для достижения физического баланса в скважине. Основные разновидности ингибирующих буровых растворов: известковые, гипсоизвестковые, хлоркалиевые, гипсокалиевые, хлоркальциевые, малосиликатные, алюмокалиевые. Обязательный компонент – реагенты-ингибиторы, замедляющие гидратацию, набухание и диспергирование глин. Общими компонентами для всех перечисленных выше видов ингибированных буровых растворов являются следующие: глина, вода, смазочные добавки, пеногасители (кроме малосиликатного). 6.4.6.1 Алюминатные растворы [2] Алюминатные растворы — это буровые глинистые промывочные растворы из кальциевой глины, которые содержат ингибирующую добавку — высокощелочной алюминат натрия, стабилизированный лигносульфонатами. Алюминатные растворы бывают пресными и соленасыщенными. Пресные алюминатные растворы используют для разбуривания глинистых отложений в условиях невысоких забойных температур. В качестве резерва стабилизатора используют только ССБ, применяемую совместно с алюминатом натрия. Алюминатные глинистые растворы (АлГР) обладают устойчивостью в широком диапазоне хлорнатриевой минерализации и небольшими показателями фильтрации. Для приготовления алюминатного глинистого раствора используют черкасский немодифицированный бентонит или другую кальциевую глину. Преимущество АлГР, приготовленного из кальциевых глин, по сравнению с раствором из натриевых глин следующее: при равном расходе реагентов он имеет меньшие значения показателя фильтрации, вязкости и СНС. Порядок приготовления АлГР следующий: в воду, содержащую необходимое количество ССБ, добавляют глину затем вводят алюминат натрия, В связи с недостаточным выпуском алюмината натрия возможна его замена алюминатом кальция, в качестве которого используют глиноземистый (или гипсоглиноземистый) цемент. На приготовление 1 м3 АлГР требуется (в кг): глины 500-700, воды 765-540, ССБ (50 %-ной концентрации) 30-150, NaAlO3 (30 %-ной концентрации) 5-30. Получаемый раствор имеет плотность 1300— 1500 кг/м3. После приготовления раствор следует выдержать не менее суток. Так как плотность алюминатного раствора доходит до 1500 кг/м3, во многих случаях его можно использовать без утяжелителя. Однако приготовить алюминатный раствор плотностью 1040 - 1080 кг/м3 невозможно. Пенообразование у растворов, содержащих лигносульфонаты, уменьшается с увеличением добавок алюмината натрия и содержания глинистой фазы. Для предотвращения пенообразования в раствор вводят пеногасители (производные жирных кислот, PC, ПЭС, трибутилфосфат и др.). |