Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для вузов
Скачать 6.47 Mb.
|
6.4. Сила трения каченияЭтот вид трения проявляется при качении и связан не с деформацией зазубрин, а с деформацией дороги (прогиб) и самого колеса (небольшое сплющивание), рис. 6.5. При качении по мягкому покрытию колесо вдавливается в опору, образуя ямку, через край которой ему все время приходится перекатываться, рис. 6.5, а. Французский физик Ш. Кулон на основе опытов нашел, что сила трения качения (Fкач) пропорциональна силе нормального давления N и обратно пропорциональна радиусу г колеса: Рис. 6.5. Возникновение силы трения качения при езде на велосипеде b Fкач = N·------ r Из формулы видно, что коэффициент трения качения зависит от радиуса колеса и выражается в единицах длины (м или см). Значения коэффициента трения качения для некоторых веществ приведены в табл. 6.2. При движении по твердому покрытию сила трения качения связана с деформацией самого колеса. С этой силой особенно приходится считаться в вело- и мотоспорте. Ее величина определяется по формуле: Таблица 6.2 Коэффициент трения качения, см
где N — сила нормального давления; b— расстояние между теоретической точкой опоры шины и фактической первой точкой встречи шины с поверхностью, по которой проходит перемещение, рис. 6.5, б. Сила трения качения много меньше силы трения скольжения, поэтому колесо широко используется в различных видах транспорта. 6.5. Сила сопротивления при движении в жидкости или газеСилы трения, рассмотренные выше, не зависели от скорости движения тела. Иначе обстоит дело при движении тела в жидкой или газообразной среде. Сила, действующая на тело в этом, случае, называется силой сопротивления. Силы сопротивления очень зависят от формы тела и возрастают при увеличении скорости его движения относительно среды. Если тело не движется относительно среды, то сила сопротивления равна нулю, т. е. аналога силе трения покоя в данном случае нет. Зависит сила сопротивления и от качества поверхности тела. Именно этим объясняется, что пловцы все чаще выступают в специальных костюмах, снижающих силу сопротивления. Скорость спортсмена и сила сопротивления встречного потока воздуха связаны между собой следующим соотношением: где S — величина, пропорциональная поверхности сопротивления (которая зависит от положение тела); где kс — коэффициент сопротивления (который зависит от обтекаемости фигуры, поверхности одежды, а также от плотности прилегания спортивной формы к туловищу); р — плотность воздуха. Сопротивление воздуха растет пропорционально квадрату скорости. Это означает, например, что при увеличении скорости на 20% сила сопротивления возрастает на 44%. Отметим, что v — это скорость движения относительно воздуха. Поэтому наличие ветра и его направление оказывают существенное влияние на силу сопротивления воздуха. Если скорость движения спортсмена v , а скорость ветра и, то при встречном ветре v1= vд + и, а при попутном ветре v2= vд — и. Если взять vд = 10 м/с, а и = 1 м/с, то |