|
Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для вузов
|
Скачать 6.47 Mb. Название | Учебник для вузов | Анкор | Дубровский В.И., Федорова В.Н. Биомеханика.doc | Дата | 28.01.2017 | Размер | 6.47 Mb. | Формат файла | | Имя файла | Дубровский В.И., Федорова В.Н. Биомеханика.doc | Тип | Учебник #922 | страница | 17 из 65 |
|
5.6. Мощность
Даже очень маленькая сила при большом перемещении тела может совершить значительную работу. Правда, для этого потребуется немалый промежуток времени. Однако во многих случаях величина участка траектории и время действия силы ограничены. Например, при прыжке сила мышц действует только при разгибании сустава достаточно малое время. За это время работа мышц должна успеть сообщить прыгуну необходимую кинетическую энергию. Поэтому важной характеристикой «устройств», используемых для совершения работы является скорость ее совершения. Такая характеристика называется мощностью.
Полезной мощностью называется скалярная величина, равная отношению работы ко времени, за которое она совершена:
Затраченной мощностью (мощность энергозатрат) называется скалярная величина, равная отношению затраченной энергии ко времени, за которое она израсходована:
P3= (5.12)
Формулы (5.11 и 5.12) определяют среднюю мощность. Для анализа практических ситуаций этого понятия не достаточно. Например, при спурте (англ. spurt — рывок) спортсмен должен за относительно малое время набрать большую скорость и способность к спурту у разных людей различна. Поэтому вводят понятие мгновенной мощности.
Мгновенной мощностью называют отношение работы (dA) ко времени, вычисленное для очень малого интервала (dt):
Аналогично определяется мгновенная мощность энергозатрат:
Отношение полезной мощности к затраченной показывает насколько эффективно используется энергия и называется коэффициентом полезного действия (КПД), который выражают в процентах:
Единица измерения мощности в СИ называется Ватт: 1 Вт = ДЖ/с (т. е. 1 Вт — это мощность двигателя, который совершает работу 1 Дж за 1 с).
Если двигатель используется для перемещения тел, то мощность (Р), сила тяги (FT) и скорость движения (v) связаны соотношением:
5.7. Работа и мощность человека. Эргометрия
Работа и мощность, которые характерны для человека, зависят от многих факторов. При кратковременных усилиях человек может развивать мощность порядка нескольких киловатт. Например, если спортсмен массой 70 кг подпрыгивает так, что его центр масс поднимается на 1 м (по отношению к нормальной стойке), а фаза отталкивания длится 0,2 с, то он развивает мощность около 3,5 кВт.
При ходьбе с постоянной скоростью по ровному месту человек также совершает работу, хотя его кинетическая энергия не изменяется. В данном случае энергия затрачивается главным образом на периодическое поднятие центра масс тела и на ускорение или замедление ног. Часть этой энергии идет на нагревание организма за счет «сопротивления» его частей и нагревание окружающей среды. Например, человек массой 70 кг при ходьбе со скоростью 5 км/ч развивает мощность около 60 Вт. С возрастанием скорости эта мощность быстро увеличивается, достигая 200 Вт при скорости 7 км/ч. При езде на велосипеде положение центра масс человека изменяется гораздо меньше, чем при ходьбе, и ускорение ног тоже меньше. Поэтому мощность, затрачиваемая при езде на велосипеде, значительно меньше: 30 Вт при скорости 9 км/ч, 120 Вт при 18 км/ч.
Работа, совершаемая мышцами при выполнении активных движений, называется динамической. Эта работа связана с перемещением частей тела. В том случае, когда человек сохраняет свою позу неизменной, такие перемещения отсутствуют, а при отсутствии перемещения работа всех сил равна нулю. Поэтому может показаться, что человек, стоящий неподвижно, не тратит энергию. Однако опыт показывает, что сохранение неподвижной позы в течение длительного времени вызывает значительное утомление. Еще большую усталость испытывает человек, держащий в вытянутой руке гантель. Сидящий человек также испытывает усталость мышц спины и поясничной области, если на плечи ему поместить груз. Причина усталости (а значит и энергозатрат) при статических нагрузках состоит в том, что покой в данном случае является кажущимся. Вследствие биологической активности мышц у человека всегда наблюдается физиологический тремор (лат. tremor — дрожание). При этом происходят незаметные глазу очень мелкие и очень частые сокращения и расслабления мышц. Следовательно, мышцы постоянно совершают работу (такую работу называют статической) и расходуют запас энергии. Сила мышц падает и требуется перерыв для ее восстановления. Этим и объясняется то, что стоящий человек время от времени переносит тяжесть тела с одной ноги на другую.
В спортивной терминологии используются следующие понятия:
— ритм работы — определенная последовательность чередования рабочих операций и их отдельных элементов в процессе деятельности;
— темп работы — число последовательно выполняемых операций в единицу времени.
При этом мощность часто определяют как темп, в котором выполняется работа или расходуется энергия.
Эргометры. Для измерения работы человека применяют приборы, называемые эргометрами. Например, велоэргометр предназначен для измерения полезной работы и мощности при езде на велосипеде. Для этого через обод колеса, которое вращает испытуемый, перекинута стальная лента. Сила трения между лентой и ободом колеса измеряется динамометром. Вся работа испытуемого затрачивается на преодоление трения. Умножая длину окружности колеса на силу трения, находят работу, совершенную при каждом обороте. Зная число оборотов и время испытания, определяют полную работу и среднюю мощность.
Энергетика бега.Предположим, что бегун передвигается с постоянной скоростью по горизонтальной поверхности. Работа, которая при этом совершается, сводится к преодолению трения и сопротивления воздуха. При беге действие трения невелико, но, тем не менее, бег с постоянной скоростью связан со значительными затратами энергии. Энергия тратится на движение тела бегуна вверх-вниз и на отталкивание ногами от почвы. Кроме того, тело бегуна превращает энергию в теплоту. Дополнительная причина потери энергии заключается в том, что ноги бегуна, масса которых составляет примерно 40% от массы тела (см. табл. 5.1), в процессе бега постоянно ускоряются и тормозятся. Поэтому работа, выполняемая мышцами ног для поддержания движения тела вперед с постоянной скоростью, велика.
В первом приближении можно считать, что работа, выполняемая мышцами бегуна за один шаг, пропорциональна кинетической энергии, сообщаемой той ноге, которая после отталкивания от земли выносится вперед: А mv2(т — масса ноги). В то же время эта работа определяется формулой А = F∙d, где F — сила мышц, d— расстояние, на котором при каждом шаге мышцы выполняют работу. Считается, что сила мышц (F) пропорциональна квадрату характеристической длины (L2), а масса (т) пропорциональна кубу характеристической длины (L3). Кроме того, расстояние d пропорционально L. Следовательно,
Таким образом, можно считать, что скорость, которую может поддерживать бегун, не зависит от его размеров. Ориентировочные значения скоростей, которые могут развивать человек и некоторые животные, представлены в табл. 5.3.
Люди — неважные бегуны. Это объясняется тем, что масса ног человека составляет около 40% массы тела и требует значительных затрат энергии при каждом торможении и разгоне. Самые быстроходные животные имеют худые ноги, а основная масса сосредоточена в теле. Большие мышцы ног у некоторых животных (лев, тигр, большие кошки) приспособлены для прыжков, а не для быстрого бега.
Таблица 5.3
Скорости животных и человека
Объект
| Скорость, м/с
| Гепард
| 30
| Газель
| - 28
| Страус
| 23
| Лисица
| 20
| Заяц
| 18
| Волк
| 18
| Гончая собака
| 16
| Человек
| 11
|
Человек ограничен в величине производимой им работы не только требуемой для этого энергией, но и скоростью ее использования, т. е. мощностью. Например, человек может пройти большое расстояние по лестнице, прежде чем будет вынужден остановиться из-за того, что израсходовал слишком много энергии. Однако, при подъеме в высоком темпе, он может упасть в изнеможении, преодолев лишь небольшую часть пути. В этом случае ограничение ставит величина затрачиваемой мощности, т. е. скорости, с которой человек за счет биохимических процессов преобразует химическую энергию пищи в механическую работу. То обстоятельство, что активный организм часто функционирует на грани своих предельных возможностей, подтверждается множеством случаев, когда спортсмены на соревнованиях разрывают мышцы, связки, сухожилия. Таблица 5.4
Расход энергии человеком при различной деятельности (ориентировочные значения)
Вид деятельности
| Мощность энергозатрат, Вт
| Подготовка к занятиям
| 105—125
| Практические занятия (лабораторные работы)
| 110—125
| Чтение про себя
| 100
| Физическая зарядка
| 265—380
| Плавание
| 550
| Сон
| 70
| Спокойное лежание
| 85
| Стойка «вольно»
| 130
| Управление мотоциклом
| 160
| Ходьба по ровной дороге со скоростью 5 км/ч
| 255-340
| Мощность энергозатрат человека с массой 70 кг при различных видах деятельности и при выполнении физических упражнении представлена в табл. 5.4 и 5.5
Таблица 5.5
Расход энергии человеком при выполнении физических упражнений в группе лечебной физкультуры
Упражнение
| Мощность энергозатрат, Вт
| Бег, 9 км/ч
| 750
| Езда на велосипеде 8,5 км/ч
| 345
| Езда на велосипеде, 15 км/ч
| 490
| Езда на велосипеде, 20 км/ч
| 690
| Плавание, 10 м/мин
| 250
| Плавание, 20 м/мин
| 355
| Плавание, 50 м/мин
| 850
| Гребля 50 м/мин
| 215
| Гребля 80 м/мин.
| 440
| Волейбол
| 265
| Футбол
| 620—930
| Баскетбол
| 780
|
Таблица 5.6
КПД человека при выполнении упражнений на велоэргометре (60 об/мин)
Развиваемая мощность, Вт
| Мощность энергозатрат, Вт
| КПД, %
| 50
| 236
| 21
| 75
| 355
| 21
| 100
| 475
| 21
| 125
| 595
| 21
| 150
| 710
| 21
| 175
| 830
| 21
| Представление о КПД человека дает таблица 5.6, в которой представлены сведения о полезной и затраченной мощностях при выполнении упражнений на велоэргометре (60 об/мин).
|
|
|