Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для вузов
Скачать 6.47 Mb.
|
8.3. Перегрузки и невесомость. Движение в безопорном пространстве. Искусственное тяготениеПерегрузки Вес тела приложен к опоре, а не к самому телу, и может измениться в зависимости от движения опоры. Например, вес тела в покое на Земле равен mg, а вес тела в покое в кабине стартующего корабля больше чем на Земле и равен m·(g + а), как следует из формул 8.3 и 8.7. Состояние, при котором вес тела больше, чем на Земле, называют перегрузкой. Если пользоваться системой отсчета, в которой тело находится в состоянии покоя, то вес тела равен (и по величине и по направлению) действующей на него силе тяжести (формула 8.7). Поэтому можно сказать, что перегрузку испытывает тело, находящееся в системе отсчета, в которой сила тяжести превышает земную. Величину перегрузки принято характеризовать отношением силы тяжести, действующей в данной системе отсчета, к силе тяжести на Земле. Например, если космический корабль стартует с ускорением а = 4g, то согласно формуле (8.3) вес тела в корабле равен 5mg, а вес тела на земле равен mg. Отношение этих величин равно пяти. Поэтому в корабле человек испытывает пятикратную перегрузку. Рис. 8.4. Перегрузки, возникающие при выходе самолета из пикирования Перегрузки испытывает и летчик, выводящий самолет из пикирования, рис. 8.4. Если радиус кривизны в нижней части траектории — R и самолет движется со скоростью v, то возникает центростремительное ускорениенаправленное вверх. Следовательно, в нижней точке траектории летчик давит на сиденье с силой: Пропорции и размеры человеческого тела, сила мышц и прочность костей приспособлены к существованию в условиях земной силы тяжести. Поэтому если человек оказывается в системе, где сила тяжести значительно превышает земную, он испытывает затруднения в выполнении самых обычных движений. Для подготовки человека к работе в условиях значительной перегрузки необходимы специальные тренировки. Для этого используют центрифугу, которая представляет собой кабину, вращающуюся в горизонтальной плоскости на длинной штанге, рис. 8.5. Рис. 8.5. Принцип создание перегрузок на центрифуге Пусть радиус штанги г, и кабина вращается с угловой скоростью ω. В этом случае кабина имеет центростремительное ускорение ац = ω 2 ·r и на тело внутри нее действует сила инерции Fи= m ω2 r. Согласно принципу Д'Аламбера, сила тяжести в кабине равна векторной сумме силы инерции и силы тяжести на Земле: Fтяж=Fи+тg. Ее величина находится по теореме Пифагора: Величина перегрузки определяется отношением силы тяжести в кабине к земной силе тяжести: Таким способом при большой угловой скорости вращения можно создать практически любую перегрузку. В табл. 8.1 представлены значения перегрузок, возникающих в некоторых условиях. Таблица 8.1 Значения некоторых перегрузок
В табл. 8.2 представлены значения кратковременных перегрузок, переносимых человеком. Таблица 8.2 Кратковременные перегрузки, относительно безболезненно переносимые тренированным человеком
Для того, чтобы человек мог переносить значительные перегрузки, применяются специальные устройства: катапультные и амортизационные кресла, привязные системы, защитные шлемы и др. Невесомость Невесомость возникает внутри любого аппарата, который движется под действием одной единственной силы — силы тяготения. В этом случае сила инерции равна по величине и противоположна по направлению силе тяготения и сила тяжести внутри аппарата равна нулю (формула 8.2). Поэтому предметы, покоящиеся относительно станции, не оказывают воздействия на опору и их вес равен нулю. Невесомостью называется такое состояние тела, при котором его вес равен нулю. Невесомость возникает, например, внутри космического корабля, который движется в безвоздушном пространстве с выключенными двигателями. Практика показала, что работа человека в условиях невесомости требует специальных навыков, а длительное пребывание в невесомости отрицательно сказывается на физическом состоянии человека и животных. Все это необходимо учитывать при подготовке пилотируемых космических полетов. Для работы в условиях невесомости и пониженной силы тяжести (например, на Луне) космонавт должен понимать суть этих явлении и, конечно, уметь правильно двигаться. Знания о двигательной активности человека в невесомости и при пониженной силе тяжести накапливаются в ходе специальных медико-биологических экспериментов, широко использующих биомеханические методы. Такие эксперименты, например, показали, что при пониженном тяготении темп и энерготраты локомоторных движений человека снижаются; локомоции и состояние человека характеризуются увеличенным сгибанием в крупных суставах; становится доступен способ передвижения прыжками. Кратковременное состояние невесомости в земных условиях можно создать в самолете, движущемся по параболической траектории. Это используется при подготовке космонавтов. Кроме того, Для имитации пониженного тяготения разработаны специальные стенды. С помощью биомеханики разрабатываются также средства, облегчающие движения человека в необычных условиях. Движение в безопорном пространстве При выполнении стандартных упражнений или действий у человека вырабатываются определенные стереотипы движений, обеспечивающие бессознательное достижение требуемого результата. Так, при толкании ядра, спортсмен инстинктивно упирается ногой, чтобы не упасть при «отдаче»; бегун выполняет движения руками, препятствующие вращению корпуса, и т. д. При этом человек обязательно взаимодействует с опорой, к которой его прижимает сила тяжести. В невесомости сила тяжести отсутствует и исчезает привычное взаимодействие с опорой. Поэтому стандартное выполнение упражнений или действий приводит появлению существенных побочных эффектов. Так, законы сохранения импульса и момента импульса в условиях невесомости приводят к тому, что человек, бросивший предмет, начинает двигаться в противоположном направлении и вращаться. При выполнении в невесомости упражнения «угол» движение ног гимнаста вызовет в соответствии с законом сохранения момента импульса встречное вращение корпуса. При завинчивании гайки в условиях невесомости возникнет вращение человека в противоположном направлении. Резкие движения существенно изменяют положение тела. Искусственное тяготение Длительное пребывание в условиях невесомости приводит к недозагрузке мышц и опорно-двигательного аппарата человека. В связи с чем космонавты должны выполнять специальные физические упражнения, носить особые костюмы, затрудняющие движения и т. п. Однако, как показывает накопленный опыт, всего этого недостаточно. Кардинальное решение проблемы может быть достигнуто только созданием искусственной силы тяжести. Рассмотрим один из способов. На рис. 8.6. показано сечение космической станции в форме бублика, которая вращается вокруг центральной оси. В системе отсчета, связанной со станцией, действуют: сила тяготения, сила инерции, обусловленная вращением станции вокруг Земли и сила инерции, обусловленная вращением станции вокруг оси. Первые две силы компенсируют друг друга (этим и обусловлена невесомость). Последняя сила будет восприниматься как сила Рис. 8.6. Возникновение искусственной силы тяжести во вращающейся космической станции тяжести F = —т·а . Ускорение во вращающейся системе это — центростремительное ускорение где ω — угловая скорость вращения станции вокруг оси, a r — удаление от оси. Направлена искусственная сила тяжести по радиусу от оси вращения В данном случае величина центростремительного ускорения дает значение местного ускорения свободного падения. Выполним некоторые расчеты. Пусть жилые помещения расположены на расстоянии r = 50 м от оси вращения и требуется создать искусственную силу тяжести, равную половине земной: Из формулы (8.8) найдем Такая угловая скорость соответствует частоте вращения 3 об/мин. |