Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для вузов
Скачать 6.47 Mb.
|
12.2. Электромагнитное воздействиеРассмотрим два вида электромагнитных воздействий на организм человека: воздействие электрического тока и воздействие электромагнитных полей. Действие электрического тока В электрической сети действие на организм или органы оказывает электрический ток, т. е. заряд, протекающий через биологический объект в единицу времени. Сопротивление тела человека между двумя касаниями (электродами) складывается из сопротивления внутренних тканей и органов и сопротивления кожи. Электросопротивление можно смоделировать электрической цепью, представленной на рис. 12.2, состоящей из резисторов и конденсаторов, отображающих омические (R) и емкостные (С) свойства биологических тканей. Рис. 12.2. Эквивалентная электрическая схема тела между двумя касаниями (электродами) Сопротивление (Rвн) внутренних частей организма слабо зависит от общего состояния человека, в расчетах принимают Rвн= 1 кОм (для пути «ладонь — ступня»). Сопротивление кожи rkпри прохождении тока от ее поверхности к внутренним тканям в десятки раз больше Rвн. Поэтому для постоянного и низкочастотного тока (50—60 Гц) сопротивление кожи при точечном контакте является определяющим фактором, который ограничивает ток. (При высоких частотах более существенным фактором является внутреннее сопротивление тела). Следовательно, в большинстве ситуаций действие тока, протекающего через тело, в основном зависит от состояния тела в точке контакта. Сухая кожа имеет высокое сопротивление, а влажная или мокрая кожа будет обладать низким сопротивлением, так как ионы, находящиеся во влаге, обеспечат прохождение тока в тело. При сухой коже сопротивление между крайними точками тела (ладонь — ступня) может быть равным 105 Ом, а при мокрой коже может составить 1% этого значения. Полное сопротивление тела между влажными руками принимают равным 1500 Ом. Максимальные токи, которые возникнут при контакте с бытовой электросетью с напряжением 220 В, будут равны: I = 220 В/105 Ом = 2,2 мА (сухая кожа), I = 220 В /1500 Ом = 146 мА ( мокрая кожа). Ток 1 мА при прохождении через тело будет едва заметен, но ток 146 мА будет смертелен даже при кратковременном воздействии. Сопротивление кожи Rk существенно зависит от внутренних и внешних причин (потливость, влажность, наличие раневого повреждения). Кроме того, на разных участках тела кожа имеет разную толщину и, следовательно, различное сопротивление. Поэтому, учитывая изменчивость сопротивления кожи, ее вообще при расчетах не учитывают, принимая Rк= 0. Ток, протекающий через тело, рассчитывают по формуле: Действие переменного тока на организм оценивается пороговыми значениями. Порог ощутимого тока — минимальная сила тока, раздражающее действие которого ощущает человек. Эта величина зависит как от индивидуальных особенностей человека, так и от частоты тока, места и площади контакта. У мужчин для участка «предплечье — кисть» на частоте 50 Гц эта величина составляет приблизительно 1 мА. У детей и женщин пороговые значения несколько меньше. Порог неотпускающего тока — минимальная сила тока, вызывающая такое сгибание сустава, при котором человек не может самостоятельно освободиться от проводника. Для мужчин эта величина составляет 10—15 мА. Наиболее чувствительными к электрическому току частями организма являются мозг, грудные мышцы и нервные центры, которые контролируют дыхание и сердце. Поэтому последствия электротравмы зависят от того, какая часть тела оказалась включенной в электрическую цепь. Очень опасно, если электрический ток идет через сердце. Опасно и действие тока на кожу лица, где слабо развит роговой слой, обеспечивающий высокое сопротивление кожных покровов. Низким сопротивлением обладают слизистые оболочки. Характер электротравмы зависит и от силы тока. Так, при включении в цепь обеих рук с органами грудной клетки, расположенными между ними, происходит следующее: • ток 10 мА вызывает сокращение мышц обеих рук; • ток 20 мА вызывает расстройства дыхания, связанные с тетаническим сокращением дыхательных мышц; • ток 80 мА вызывает нарушение сердечной деятельности; • ток 100—400 мА вызывает необратимые расстройства в функционировании возбудимых тканей сердца (одна из причин гибели при электротравме). Действие переменного электрического поля Переменное электрическое поле вызывает продольные колебания свободных зарядов в проводнике и вращательные колебания молекул в диэлектрике. Эти процессы сопровождаются выделением теплоты. Пусть в переменном электрическом поле находится проводник (например, электролит). Высокочастотное поле вызывает колебательное движение ионов, т. е. ток проводимости, сопровождающийся тепловым эффектом. Количество теплоты выразим через напряженность Е электрического поля в проводящем теле, сопротивление которого примем равнымДля этого выполним следующие преобразования: Разделив это равенство на объем тела (S·L), получим, что количество теплоты, выделяющееся за 1 с в 1 м3 ткани пропорционально квадрату амплитуды напряженности электрического поля Ети обратно пропорционально удельному электрическому сопротивлению р: Пусть в переменном электрическом поле с амплитудной Е находится диэлектрик с относительной диэлектрической проницаемостью е. Под действием переменного электрического поля происходят ориентационная и структурная поляризации молекул. При этом возникает колебательное движение молекул, сопровождающееся выделением теплоты (диэлектрические потери). Количество выделившейся теплоты зависит от круговой частоты поля ω и угла δ, на который колебания молекул отстают по фазе от колебаний напряженности поля (угол 5 называется углом диэлектрических потерь): Действие переменного магнитного поля Пусть в переменном магнитном поле находится проводник. В результате явления электромагнитной индукции в нем возникают вихревые токи (токи Фуко), нагревающие объект. Количество теплоты, выделяющееся за 1 с в 1 м3 вещества, определяется соотношением: где В — амплитудное значение магнитной индукции; ω — круговая частота; р — удельное электросопротивление ткани; k — некоторый коэффициент, учитывающий геометрию тела. Использование токов и полей в лечебных целях Биологические ткани и органы являются разнородными образованиями: одни из них являются диэлектриками, другие проводниками. Значительную часть организма составляют биологические жидкости (электролиты), содержащие большое количество ионов. Постоянный ток Под воздействием постоянного электрического поля ионы, содержащиеся в биологических тканях, приходят в направленное движение. При этом происходит их разделение и изменение их концентрации в различных элементах ткани. Электрофорез — метод, основанный на введении вещества через кожу или слизистые оболочки под действием постоянного тока. Под электроды на кожу кладут прокладки, смоченные соответствующим лекарственным препаратом. Через катод вводят анионы (йод, гепарин, бром), а через анод — катионы (Na, Ca, новокаин). Гальванизация — физиотерапевтический метод, основанный на пропускании постоянного тока напряжением 60—80 В через ткани организма. Высокочастотные токи Первичное действие переменного (гармонического) тока и электромагнитного поля на биологические объекты заключается в следующем: а) смещение ионов в растворах электролитов, их разделение, перераспределение; б) изменение поляризации диэлектриков. Высокочастотные токи. При частотах приблизительно более 500 кГц смещение ионов становится соизмеримым с их смещением в результате молекулярно-теплового движения, поэтому ток или электромагнитная волна не будет вызывать раздражающего действия. Основным первичным эффектом в этом случае является тепловое воздействие. (Постоянный ток и токи низкой частоты для нагревания тканей не пригодны, так как их использование при больших значениях может привести к электролизу и разрушению). Преимущества лечебного прогревания ВЧ электромагнитными колебаниями перед грелкой: • образование теплоты во внутренних частях организма; • подбирая соответствующую частоту, можно осуществлять термоселективное воздействие; • можно дозировать нагревание, регулируя мощность генератора; • возникновение внутримолекулярных процессов, которые приводят к специфическим воздействиям. Вычислим количество теплоты q, выделяющееся в единице объема. Мощность тока, расходуемая на нагревание тканей, определяется по формуле Р = I2·R. Преобразуем ее, считая, что образец биологической ткани длиной L имеет удельное сопротивление р и контактирует с двумя плоскими электродами площадью S (рис. 12.3). Пусть плотность тока j одинакова во всех точках ткани и равна плотности тока на электродах.Учитывая чтополучаем: Рис. 12.3. Схема расположение биологической ткани между электродами где V = SL — объем ткани. Разделив полученное выражение на объем, узнаем количество теплоты q, выделяющееся за 1 с в 1 м3: Пропускание тока высокой частоты через ткань используют в следующих физиотерапевтических процедурах. Диатермия (сквозное прогревание) — получение теплового эффекта в глубоколежащих тканях. При диатермии применяют ток частотой 1—2 МГц, напряжением 100—150 В, сила тока 1—1,5 А. При этом сильно нагреваются кожа, жир, кости, мышцы (так как у них наибольшее удельное сопротивление). Меньше нагреваются органы, богатые кровью или лимфой: легкие, печень, лимфоузлы. Недостаток диатермии — непродуктивное выделение теплоты в слое кожи и подкожной клетчатке. Местная дарсонвализация. При этом применяют ток частотой 100—400 кГц, силой тока I = 10—15 мА и напряжением — десятки кВ. Токи высокой частоты используются для хирургических целей. Диатермокоагуляция — прижигание, «сваривание» ткани. При этом применяется плотность тока 6—10 мА/мм2, в результате чего температура ткани повышается и ткань коагулирует. Диатермотомия — рассечение тканей при помощи электрода в форме лезвия. При этом плотность тока составляет 40 мА/мм2. Электрохирургическое воздействие сопровождается меньшими кровопотерями. Переменное магнитное поле Если поместить биологическую ткань в переменное магнитное поле (например, возле торца катушки с переменным током), то в результате явления электромагнитной индукции в проводящих тканях образуются вихревые токи (токи Фуко), нагревающие объект. Нагревание области тела при действии высокочастотного магнитного поля (частота 10—15 МГц) называется индуктотермией. Схема воздействия показана на рис. 12.4. При индуктотермии больше нагреваются ткани с небольшим удельным сопротивлением. Сильнее будут нагреваться ткани, богатые сосудами, например, мышцы. Меньше будут нагреваться такие ткани, как жир. Используется также индуктотермия при УВЧ магнитном поле. Рис. 12.4. Схема воздействия при индуктотермии В полую катушку помещают образец. При пропускании по катушке переменного тока создается высокочастотное магнитное поле, нагревающее образец Высокочастотные токи и поля Одним из распространенных методов высокочастотной терапии является воздействие высокочастотным электрическим полем УВЧ (УВЧ-терапия). При этом биологическая система помещается между плоскими электродами, которые не касаются тела (рис. 12.5). Рис. 12.5. Схема воздействия полем УВЧ При УВЧ-терапии колебания имеют частоту 40—50 МГц. В России в аппаратах УВЧ используется частота 40,58 МГц. При УВЧ-терапии диэлектрические ткани организма нагреваются интенсивнее проводящих (на частоте около 40 МГц, которая используется на практике). Тепловой эффект не всегда является главной целью процедуры. Во многих случаях важным является значительное влияние на физиологическое состояние клетки, которое может изменяться под влиянием колебаний полярных молекул или отдельных частей органических молекул в переменном УВЧ электрическом поле. Электромагнитные СВЧ волны Физиотерапевтические методы, основанные на использовании электромагнитных волн СВЧ диапазона, в зависимости от длины волны получили два названия: микроволновая терапия (частота — 2375 МГц, длина волны — 12,6 см) и ДЦВ-терапия, т. е. терапия дециметровыми волнами (частота — 460 МГц, длина волны — 65,2 см). Первичное действие СВЧ волн на вещество обусловлено колебаниями ионов в растворах электролитов, а также атомов или молекул в полярных диэлектриках, которые вызываются переменным высокочастотным электромагнитным полем волны, проникающей в вещество. При этом в единице объема ткани выделяется количество теплоты прямо пропорциональное относительной диэлектрической проницаемости ткани е, круговой частоте со и квадрату интенсивности электромагнитного поля I. где k — некоторый коэффициент. Глубина проникновения электромагнитных волн в биологические ткани зависит от способности этих тканей поглощать энергию волны. Сантиметровые волны проникают в мышцы, кожу на глубину до 2 см, в жировую ткань, кости — около 10 см. Дециметровые волны проникают на глубину в 2 раза большую. Поскольку в частотный диапазон СВЧ-излучения попадает собственная частота колебаний молекул воды, то именно водные среды организма поглощают энергию СВЧ-волн в большей степени. СВЧ-волны слабо взаимодействуют с кожей и жировой клетчаткой, а в мышцах и внутренних органах интенсивно поглощаются. Поэтому мышцы и внутренние органы испытывают наибольшее нагревание при микроволновой терапии. Много тепла выделяется в жидкостях, заполняющих различные полости. |