Главная страница

Электричество и магнетизм. Эу_Э. Учебник по физике кгтукхти. Кафедра физики. Старостина И. А., Кондратьева О. И., Бурдова Е. В. Для перемещения по тексту электронного учебника можно использовать


Скачать 1.52 Mb.
НазваниеУчебник по физике кгтукхти. Кафедра физики. Старостина И. А., Кондратьева О. И., Бурдова Е. В. Для перемещения по тексту электронного учебника можно использовать
АнкорЭлектричество и магнетизм
Дата06.02.2020
Размер1.52 Mb.
Формат файлаdoc
Имя файлаЭу_Э.doc
ТипУчебник
#107388
страница9 из 35
1   ...   5   6   7   8   9   10   11   12   ...   35

1. 9. Применение теоремы Гаусса для расчета напряженности электростатического поля.





  1. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью зарядов +.

Пусть поверхностная плотность зарядов или заряд, приходящийся на единицу поверхности . Силовые линии поля перпендикулярны этой плоскости и направлены от нее в обе стороны (рис.1.10).

Построим замкнутую цилиндрическую поверхность с основаниями dS, парал­лельными заряженной поверхности и образующей, параллельной вектору . Сле­дуя последнему условию, поток напряженности ФЕ через боковую поверхность ци­линдра равен нулю. Поэтому полный поток через цилиндрическую поверхность ра­вен сумме потоков сквозь его основания. Так как вектор перпендикулярен осно­ваниям, Еn=Е и суммарный поток ФЕ можно записать ФЕ=2ЕdS.




Рис.1.10. Определение на­пряженности поля беско­нечной заряженной плос­кости.

Согласно теореме Гаусса , где - заряд, охватываемый цилиндрической по­верхностью. Таким образом

, .

Если плоскость помещена в среду с относительной ди­электрической проницаемостью , то напряженность электростатического поля, соз­даваемая плоскостью, равна .

Из формулы следует, что Е не зависит от расстояния между плоскостью и точкой на­блюдения, т.е. поле равномерно заряженной бесконечной плоскости однородно.
  1. 1   ...   5   6   7   8   9   10   11   12   ...   35


написать администратору сайта