Главная страница

методичка английский. Учебное пособие для студентов 23 курсов очной формы обучения специальности 351400 Прикладная информатика в экономике


Скачать 0.86 Mb.
НазваниеУчебное пособие для студентов 23 курсов очной формы обучения специальности 351400 Прикладная информатика в экономике
Анкорметодичка английский.doc
Дата09.12.2017
Размер0.86 Mb.
Формат файлаdoc
Имя файламетодичка английский.doc
ТипУчебное пособие
#10817
страница2 из 9
1   2   3   4   5   6   7   8   9
Participle II

The given information; the name given to the machine; the coded data; the device used in World War II; the invention named ENIAC; the machine called EDVAC; instructions kept in the memory; the engine designed for storing data; data stored in a binary code; vacuum tubes invented by J. Neumann; the general-purpose machine proposed by Ch. Babbage; the ma­chine provided with the necessary facts.
7. Ознакомьтесь с терминами текста 2.

analog computer — аналоговый ком­пьютер

digital computer — цифровой компь­ютер

to aim gunsнаводить орудия на цель

to figure out — вычислять

at a fast rate — с высокой скоростью

memory / storage — запоминающее ус­тройство

to store data and instructions — запоминать информацию и команды

stored program computer — компьютер с занесенной в память программой

binary code — двоичный код

condition — режим, состояние, условие

vacuum tube — электронная (вакуумная) трубка (лампа)

to amplify — усиливать

to perform computations — выпол­нять вычисления
8. Прочтите текст 2 и скажите, что вы узнали о первых цифровых и аналоговых компьютерах. Переведите текст.

Text 2. THE FIRST COMPUTERS

In 1930 the first analog computer was built by American named Vannevar Bush. This device was used in World War II to help aim guns. Many technical developments of electronic digital comput­ers took place in the 1940s and 1950s. Mark I, the name given to the first digital computer, was completed in 1944. The man responsible for this invention was Professor Howard Aiken. This was the first machine that could figure out long lists of mathe­matical problems at a very fast rate.

In 1946 two engineers at the University of Pennsilvania, J.Eckert and J.Maushly, built their digital computer with vacu­um tubes. They named their new invention ENIAC (the Elec­tronic Numerical Integrator and Calculator).

Another important achievement in developing computers came in 1947, when John von Neumann developed the idea of keeping instructions for the computer inside the computer's memory. The contribution of John von Neumann was particu­larly significant. As contrasted with Babbage's analytical engine, which was designed to store only data, von Neumann's ma­chine, called the Electronic Discrete Variable Computer, or EDVAC, was able to store both data and instructions. He also contributed to the idea of storing data and instructions in a bi­nary code that \ises only ones and zeros. This simplified com­puter design. Thus computers use two conditions, high voltage, and low voltage, to translate the symbols by which we commu­nicate into unique combinations of electrical pulses. We refer to these combinations as codes.

Neumann's stored program computer as well as other ma­chines of that time were made possible by the invention of the vacuum tube that could control and amplify electronic signals. Early computers, using vacuum tubes, could perform compu­tations in thousandths of seconds, called milliseconds, instead of seconds required by mechanical devices.
9. Просмотрите текст еще раз и ответьте на вопросы, ис­пользуя информацию текста.

1. When was the first analog computer built? 2. Where and how was that computer used? 3. When did the first digital computers appear? 4. Who was the inventor of the first digital computer? 5. What could that device do? 6. What is ENIAC? Decode the word. 7. What was J.Neumann's contribution into the development of computers? 8. What were the advantages of EDVAC in comparison with ENIAC? 9. What does binary code mean ? 10. Due to what invention could the first digital com­puters be built?
10. Найдите в тексте 2 английские эквиваленты следующих словосочетаний.

Цифровые компьютеры; технические усовершенствова­ния; совершенствование компьютеров; ответственный за изобретение; математические задачи; электронные трубки; важное достижение; запоминающее устройство; значи­тельный вклад; двоичный код; высокое напряжение; низ­кое напряжение; электрические импульсы; тысячная доля секунды.

Происходить; завершать; вычислять; хранить команды внутри компьютера; запоминать информацию; запоминать команды; содействовать; использовать единицу и ноль; упрощать дизайн; усиливать сигналы; выполнять вычис­ления.
11. Составьте пары близких по значению слов из перечня, представленного ниже.

Verbs: to name, to complete, to calculate, to develop, to keep, to interpret, to communicate, to fulfill, to apply, to trans­late, to improve, to build, to call, to store, to communicate, to figure out, to perform, to use, to finish, to construct, to con­nect.

Nouns: speed, aim, storage, information, machine, signifi­cance, computation, data, device, rate, calculation, purpose, memory, importance.
12. Заполните пропуски необходимыми словами.

1. The first digital computer could_________a lot of mathe­matical problems at a fast ______. 2. Vannevar Bush built the first _________computer in 1930. 3. Babbage's analytical engine was designed to _________ data. 4. J.von Neumann invented a machine that was able to________ not only data but also _________. 5. Neumann_________ the idea of storing data in a _______ . 6. Computers use two conditions for_________symbols. 7. The invention of________ ________made computers possible to control and __________electronic signals. 8. Due to_______ ________computers could perform__________ much faster.
13. Переведите предложения или словосочетания, содер­жащие:

А. Инфинитив в функции обстоятельства

1. Computers were designed to perform thousands of com­putations per second. 2. To make computers more reliable tran­sistors were used. 3. They were applied to reduce computation­al time. 4. To integrate large numbers of circuit elements into a small chip, transistors should be reduced in size. 5. To use in­tegrated circuit technology new computers were built. 6. Ana­lytical engine was invented to store data.

Б. Инфинитив в функции определения

The problem to be solved; the work to be finished; the cards to be punched; calculations to be performed; the machine to be shown at the exhibition; the device to be provided with the nec­essary facts; computers to be used for data processing; efforts to increase reliability; electronics to connect systems and sub­systems; the speed of response to depend on the size of transis­tor; computers to perform thousands of calculations per second; vacuum tubes to control and amplify electric signals; these are circuits to use a large number of transistors; operations to be performed.
14. Выполните письменно перевод текста 3 по вариантам.

Text 3. SOME FIRST COMPUTER MODELS

1. Babbage's Analytical Engine

In 1832, an English inventor and mathematician Charles Babbage was commissioned by the British government to devel­op a system for calculating the rise and fall of the tides.

Babbage designed a device and called it an analytical engine. It was the first programmable computer, complete with punched cards for data input. Babbage gave the engine the ability to per­form different types of mathematical operations. The machine was not confined to simple addition, subtraction, multiplication, or division. It had its own "memory", due to which the machine could use different combinations and sequences of operations to suit the purposes of the operator.

The machine of his dream was never realized in his life. Yet Babbage's idea didn't die with him. Other scientists made attempts to build mechanical, general-purpose, stored-program computers throughout the next century. In 1941 a relay com­puter was built in Germany by Conrad Zuse. It was a major step toward the realization of Babbage's dream.

2. The Mark I Computer (1937-1944)

In 1944 in the United States, International Business Ma­chines (IBM) built a machine in cooperation with scientists working at Harvard University under the direction of Prof. Aiken. The machine, called Mark I Automatic Sequence-Con­trolled Calculator, was built to perform calculations for the Manhattan Project, which led to the development of atomic bomb. It was the largest electromechanical calculator ever built. It used over 3000 electrically actuated switches to control its operations. Although its operations were not controlled elec­tronically, Aiken's machine is often classified as a computer because its instructions, which were entered by means of a punched paper tape, could be altered. The computer could cre­ate ballistic tables used by naval artillery.

The relay computer had its problems. Since relays are elec­tromechanical devices, the switching contacts operate by means of electromagnets and springs. They are slow, very noisy and consume a lot of power.

3. The ABC (1939-1942)

The work on introducing electronics into the design of com­puters was going on.

The gadget that was the basis for the first computer revolu­tion was the vacuum tube, an electronic device invented early in the twentieth century. The vacuum tube was ideal for use in computers. It had no mechanical moving parts. It switched flows of electrons off and on at rates far faster than possible with any mechanical device. It was relatively reliable, and operated hun­dreds of hours before failure. The first vacuum tube computer was built at Iowa University at about the same time as the Mark I. The computer, capable to perform thousands of related computations, was called ABC, the Atanasoff-Berry Comput­er, after Dr. John Atanasoff, a professor of physics and his assis­tant, Clifford Berry. It used 45 vacuum tubes for internal logic and capacitors for storage. From the ABC a number of vacu­um-tube digital computers developed.

Soon the British developed a computer with vacuum tubes and used it to decode German messages.


  1. Поменяйтесь вариантами, прочтите текст и выразите одним-двумя предложениями основную мысль текстов, предложенных выше.

  2. Прочтите текст 4 и передайте кратко его содержание а) на русском языке; б) на английском языке.

Text 4. FOUR GENERATIONS OF COMPUTERS

The first vacuum tubes computers are referred to as first gen­eration computers, and the approximate period of their use was from 1950 to 1959. UNIVAC 1 (UNIVersal Automatic Com­puter) is an example of these computers which could perform thousands of calculations per second. Those devices were not only bulky, they were also unreliable. The thousands of vacuum tubes emitted large amounts of heat and burned out frequently.

The transistor, a smaller and more reliable successor to the vacuum tube, was invented in 1948. So-called second genera­tion computers, which used large numbers of transistors were able to reduce computational time from milliseconds to microsec­onds, or millionths of seconds. Second-generation computers were smaller, faster and more reliable than first-generation com­puters.

Advances in electronics technology continued, and micro­electronics made it possible to reduce the size of transistors and integrate large numbers of circuit elements into very small chips of silicon. The computers that were designed to use integrated circuit technology were called third generation computers, and the approximate time span of these machines was from 1960 to 1979. They could perform many data processing operations in nanoseconds, which are billionths of seconds.

Fourth generation computers have now arrived, and the inte­grated circuits that are being developed have been greatly re­duced in size. This is due to microminiaturization, which means that the circuits are much smaller than before; as many as 100 tiny circuits are placed now on a single chip. A chip is a square or rectangular piece of silicon, usually from 1/10 to 1/4 inch, upon which several layers of an integrated circuit are etched or imprinted, after which the circuit is encapsulated in plastic or metal.

UNIT 4

DATA PROCESSING CONCEPTS

1. Ознакомьтесь с терминами текста 1.

data processing — обработка информа­ции (данных)

to convert— преобразовывать; переводить (в др. единицы)

to accomplish —завершать, заканчивать; осу­ществлять, выполнять

to house — помещать, размещать

to improve — улучшать, совершенствовать

to control — управлять, регулировать; управ­ление, регулирование

to store — хранить, запоминать, заносить (разме­щать) в памяти

storage — запоминающее устройство, память; хранение

resource — ресурс; средство; возможность

facility — устройство; средство

facilities — приспособления; возможности

equipment — оборудование; аппаратура; приборы; устройства

available — доступный; имеющийся (в нали­чии); возможный

display — дисплей; устройство (визуального) отображения; показ

manner — способ, образ (действий)

sequence — последовательность, порядок (сле­дования)

sucсessively — последовательно

data storage hierarchy — иерархия (последова­тельность) запоминания информации (данных)

to enter - входить; вводить (данные); заносить, записывать

comprehensive groupings — полные, обширные, универ­сальные образования

meaningful — имеющий смысл; значащий (о данных)

item — элемент; составная часть

record — запись, регистрация; записывать, ре­гистрировать

file — файл; заносить (хранить) в файл

set — набор; множество; совокупность; серия; группа; система

data base — база данных

related — смежный; взаимосвязанный; относя­щийся (к ч.-л.)
2. Прочтите текст и скажите, как вы понимаете термины «обработка информации» и «иерархия запоминания ин­формации».

Text 1. DATA PROCESSING AND DATA PROCESSING SYSTEMS

The necessary data are processed by a computer to become useful information. In fact this is the definition of data process­ing. Data are a collection of facts — unorganized but able to be organized into useful information. Processing is a series of ac­tions or operations that convert inputs into outputs. When we speak of data processing, the input is data, and the output is useful information. So, we can define data processing as a se­ries of actions or operations that converts data into useful in­formation.

We use the term data processing system to include the resourc­es that are used to accomplish the processing of data. There are four types of resources: people, materials, facilities, and equip­ment. People provide input to computers, operate them, and use their output. Materials, such as boxes of paper and printer rib­bons, are consumed in great quantity. Facilities are required to house the computer equipment, people and materials.

The need for converting facts into useful information is not phenomenon of modern life. Throughout history, and even prehistory, people have found it necessary to sort data into forms that were easier to understand. For example, the ancient Egyp­tians recorded the ebb and flow of the Nile River and used this information to predict yearly crop yields. Today computers con­vert data about land and water into recommendations to farm­ers on crop planting. Mechanical aids to computation were de­veloped and improved upon in Europe, Asia, and America throughout the seventeenth, eighteenth, and nineteenth centu­ries. Modern computers are marvels of an electronics technol­ogy that continues to produce smaller, cheaper, and more pow­erful components.

Basic data processing operations

Five basic operations are characteristic of all data process­ing systems: inputting, storing, processing, outputting, and con­trolling. They are defined as follows.

Inputting is the process of entering data, which are collected facts, into a data processing system. Storing is saving data or information so that they are available for initial or for additional processing. Processing represents performing arithmetic or log­ical operations on data in order to convert them into useful in­formation. Outputting is the process of producing useful infor­mation, such as a printed report or visual display.

Controlling is directing the manner and sequence in which all of the above operations are performed.

Data storage hierarchy

It is known that data, once entered, are organized and stored in successively more comprehensive groupings. Generally, these groupings are called a data storage hierarchy. The general group­ings of any data storage hierarchy are as follows.

1) Characters, which are all written language symbols: let­ters, numbers, and special symbols. 2) Data elements, which are meaningful collections of related characters. Data elements are also called data items or fields. 3) Records, which are collections of related data elements. 4) Files, which are collections of re­lated records. A set of related files is called a data base or a data bank.
1   2   3   4   5   6   7   8   9


написать администратору сайта