методичка по гидравлике. Учебное пособие для студентов направления 250400. 62 Технология лесозаготовительных и деревоперерабатывающих производств
Скачать 9.89 Mb.
|
Объемные гидродвигатели
Объемным гидродвигателем называется гидромашина для преобразования энергии потока рабочей жидкости в энергию движения выходного звена. Гидродвигатели разделяют на три класса (рисунок 2.2):
движением выходного звена. Рисунок 2.2 – Классификация объемных гидродвигателей
Гидроцилиндры являются простейшими гидродвигателями, которые применяются в качестве исполнительных механизмов гидроприводов различных машин и механизмов с поступательным движением выходного звена. Основные схемы гидроцилиндров представлены на рисунке 2.3. По принципу действия и конструкции они весьма разнообразны. По кинематическим признакам гидроцилиндры делятся на две группы:
Различают гидроцилиндры одностороннего действия (рисунок 2.3 а, в, д, ж, г) и двустороннего действия (рисунок 2.3 б, е, з) [5]. Гидроцилиндр одностороннего действия (рисунок 2.3 а) имеет шток с поршнем, перемещаемый силой давления жидкости в одну сторону. Обратный ход штока совершается под действием внешней силы или пружины. Рабочая жидкость подводится только в одну рабочую полость. Гидроцилиндр двустороннего действия (рисунок 2.3 б) имеет поршень с односторонним штоком с внутренним и наружным уплотнениями. Рабочая жидкость подводится поочередно в обе рабочие полости. Движение ведомого звена в обе стороны производится под действием давления жидкости. Рисунок 2.3 – Гидроцилиндры с возвратно-поступательным движением выходного звена: а – с односторонним штоком; б – с двусторонним штоком; в – плунжерный; г – телескопический; д, е – с двусторонним подводом рабочей жидкости; ж – мембранный; з – сдвоенный Силовой гидроцилиндр, имеющий несколько штоков, общий ход которых больше длины его корпуса, называется телескопическим (рисунок 2.3 г). Применяются телескопические гидроцилиндры в случаях, когда при малой длине корпуса требуется получить большой ход рабочего звена. Выдвижение штоков начинается с поршня большего диаметра. Мембранные гидроцилиндры (рисунок 2.3 ж) применяются там, где требуются незначительные перемещения при высоких усилиях. В гидроцилиндрах двустороннего действия движение выходного звена в обоих направлениях осуществляется под действием потока рабочей жидкости. Такие гидроцилиндры выполняются в двух вариантах (рисунок 2.3 д, е, з):
Гидроцилиндры с двусторонним штоком применяются в тех случаях, когда необходимо в обычной схеме подключения гидролинии получить одинаковое усилие и одинаковую скорость при движении штока в обоих направлениях. Однако такие гидроцилиндры увеличивают габариты машины, так как шток выходит по обе стороны корпуса, и, кроме того, они более сложны в изготовлении. Поэтому преимущественно применяют гидроцилиндры с односторонним штоком, а нужное соотношение скоростей при движении в разных направлениях обеспечивают схемой подключения и конструктивными размерами. Сдвоенные гидроцилиндры (рисунок 2.3 з) применяют для увеличения усилия на штоке. Такие гидроцилиндры используются, например, когда для получения необходимого усилия, когда нельзя установить гидроцилиндр с большим диаметром, но при этом длина цилиндра не ограничивается. Последовательное соединение гидроцилиндров увеличивает эффективную площадь, а следовательно, тянущее или толкающее усилие на штоке [12].
Общая схема устройства гидроцилиндра представлена на рисунке 2.4. Рисунок 2.4 – Устройство гидроцилиндра: 1 – собственно цилиндр; 2 – поршень; 3 – шток; 4 – задняя крышка с проушиной; 5 – передняя крышка; 6 – проушина штока (головка); 7 – штоковая полость; 8 – бесштоковая полость Основными параметрами гидроцилиндров определенными государственным стандартом являются: а) диаметры гидроцилиндров; б) диаметры штоков; в) ход поршня; г) коэффициент мультипликации. Стандартами отраслей (ОСТ) разработаны типовые гидроцилиндры с параметрами Госстандарта. При проектировании гидроцилиндров коэффициент мультипликации упрощает расчеты. На практике в редких случаях проектируют гидроцилиндры, их выбирают из перечня типовых. Отметим особенности выпускаемых в массовом производстве гидроцилиндров. Гидроцилиндры общепромышленного назначения (Ц) выпускаются всего с двумя значениями коэффициента мультипликации φ:
Эти гидроцилиндры рассчитаны так же на два разных уровня давления:
Гидроцилиндры сельского хозяйства (ЦС) рассчитаны на давление от 6 до 8 МПа. Гидроцилиндры станкостроения (Г) – от 4 до 6 МПа. В лесной промышленности используются как цилиндры других отраслей, так и собственного производства. Эти цилиндры не имеют буквенного индекса и производятся для определенных машин. Давление в гидроцилиндрах лесных машин от 16 до 18 МПа, однако оно не остается постоянным и с усовершенствованием производства растет. Все типы гидроцилиндров (рисунок 2.4) состоят из двух сборочных единиц: корпуса и поршневой группы. Основные конструктивные отличия различных типов гидроцилиндров заключаются в способе соединения крышек с гильзой (собственно цилиндром). Это соединение может быть разъемным (резьбовым; шпильки, болты) или неразъемным (электродуговая сварка). Поршневые группы отличаются в основном применяемыми типами уплотнений. В таблице 2.2 представлены условные (схематичные) обозначения гидроцилиндров. Таблица 2.2 – Условные обозначения гидроцилиндров
Технические параметры гидроцилиндров различных отраслей представлены в таблице 2.3.
Таблица 2.3 – Гидроцилиндры общетехнического назначения 3 3 Окончание таблицы 2.3
Техническая характеристика гидроцилиндров, применяемых в машинах лесной промышленности, приведена в таблице 2.4 [4]. Таблица 2.4 – Техническая характеристика гидроцилиндров, применяемых в машинах лесной промышленности
Конструкции гидроцилиндров могут быть по функциональному назначению только для выполнения основной силовой функции или с дополнительными функциями:
Выполнение этих функций достигается встраиванием специальных устройств в крышки гидроцилиндров. Основные требования к конструкциям гидроцилиндров установлены ГОСТ 161514-80 «Технические требования к конструкциям гидроцилиндров». В них оговариваются конструкция и размеры деталей, присоединительные размеры, требования к уплотнениям, проходным сечениям отверстий присоединения шлангов и т.д. Основные параметры гидроцилиндров установлены ГОСТ 6540-68 (с изменениями 1988 г.) «Гидроцилиндры и пневмоцилиндры – ряды основных параметров». К этим рядам относятся: номинальное давление, диаметр поршня (цилиндра), диаметр штока, ход штока. Установленные стандартом параметры приведены в таблицах 2.3, 2.4. Стандартом также рекомендуются отношения значений площадей штоковой и поршневой полостей цилиндра (коэффициент мультипликации ) для определения диаметра штока (ГОСТ 6540-68). Заводы-изготовители гидроцилиндров общетехнического назначения, а также некоторые отрасли производят гидроцилиндры двух типов: с нормальным диаметром штока (=1,33) и с увеличенным (=1,6). Выбор соотношения диаметров штока и цилиндров, таким образом, является произвольным (в пределах рекомендуемых значений ) и ограничением в выборе могут быть только значения прочности и устойчивости штока.
Для возвратно-поворотных движений приводимых узлов на угол, меньший 360 °, применяют поворотные гидроцилиндры (рисунок 2.5), которые представляют собой объемный гидродвигатель с возвратно- поворотным движением выходного звена. Рисунок 2.5 – Поворотный однолопастной гидроцилиндр: а – схема; б – общий вид Поворотный гидроцилиндр состоит из корпуса 1 и поворотного ротора, представляющего собой втулку 2, несущую пластину (лопасть) 3. Кольцевая полость между внутренней поверхностью цилиндра и ротором разделена уплотнительной перемычкой 4 с пружинящим поджимом к ротору уплотнительного элемента 5. При подводе жидкости под давлением PP в верхний канал (рисунок 2.5, а) пластина 3 с втулкой 2 будет поворачиваться по часовой стрелке. Угол поворота вала цилиндра с одной рабочей пластиной обычно не превышает 270 – 280 °. Расчетный крутящий момент М на валу рассматриваемого гидроцилиндра с одной пластиной равен произведению силы R на плечо а приложения этой силы (расстояние от оси вращения до центра давления рабочей площади пластины) M F a . (2.1) Усилие F определяется произведением действующего на лопасть перепада давлений на рабочую площадь пластины S F = ΔPS = (PР – PСЛ) S. (2.2) Из рисунка 2.5, а видно, что рабочая площадь пластины S D d b , (2.3) 2 где b – ширина пластины. Плечо приложения силы a DDdDd. (2.4) |