Главная страница
Навигация по странице:

  • Рисунок1 .11.1 - Обобщенная структура СУБД

  • Системная таблица Содержание

  • Методы синтаксической оптимизации запросов

  • Логические преобразования запросов.

  • Преобразования запросов с изменением порядка реляционных операций.

  • Приведение запросов с вложенными подзапросами к запросам с соединениями.

  • Семантические методы оптимизации

  • Преобразование запросов с учетом семантической информации.

  • Использование ограничений целостности при анализе запросов.

  • ПЛЕЩ. Учебное пособие содержит


    Скачать 3.78 Mb.
    НазваниеУчебное пособие содержит
    АнкорПЛЕЩ.docx
    Дата29.06.2018
    Размер3.78 Mb.
    Формат файлаdocx
    Имя файлаПЛЕЩ.docx
    ТипУчебное пособие
    #20888
    страница19 из 20
    1   ...   12   13   14   15   16   17   18   19   20

    1.11. Архитектура СУБД и оптимизация запросов


    СУБД должна управлять внешней памятью, в которой расположены файлы с данными, файлы журналов и файлы системного каталога (рисунок 1.11.1). С другой стороны, СУБД управляет и оперативной памятью, в которой располагаются буфера с данными, буфера журналов, данные системного каталога, которые необходимы для поддержки целостности и проверки привилегии пользователей. Кроме того, и оперативной памяти во время работы СУБД располагается информация, которая соответствует текущему состоянию обработки запросов, там хранятся планы выполнения скомпилированных запросов и т. д.

    Модуль управления внешней памятью обеспечивает создание необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например для ускорения доступа к данным в некоторых случаях (обычно для этого используются индексы). Как мы рассматривали ранее, в некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти. Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД.

    Модуль управления буферами оперативной памяти предназначен для решения задач эффективной буферизации, которая используется практически для выполнения всех остальных функций СУБД.

    Условно оперативную память, которой управляет СУБД, можно представить как совокупность буферов, хранящих страницы данных, буферов, хранящих страницы журналов транзакций и область совместно используемого пула (рисунок 11.1.2). Последняя область содержит фрагменты системного каталога, которые необходимо постоянно держать в оперативной памяти, чтобы ускорить обработку запросов пользователей, и область операторов SQL с курсорами. Фрагменты системного каталога в некоторых реализациях называются словарем данных. В стандарте SQL2 определены общие требования к системному каталогу.

    14

    Рисунок1.11.1- Обобщенная структура СУБД
    14

    Рисунок11.1.2 –Оперативная память, управляемая СУБД
    Системный каталог в реляционных СУБД представляет собой совокупность специальных таблиц, которыми владеет сама СУБД. Таблицы системного каталога создаются автоматически при установке программного обеспечения сервера БД. Все системные таблицы обычно объединяются некоторым специальным «системным идентификатором пользователя». При обработке SQL-запросов СУБД постоянно обращается к этим таблицам. В некоторых СУБД разрешен ограниченный доступ пользователей к ряду системных таблиц, однако только в режиме чтения.

    Только системный администратор имеет некоторые права на модификацию данных в некоторых системных таблицах.

    Каждая таблица системного каталога содержит информацию об отдельных структурных элементах БД. В стандарте SQL2 определены следующие системные таблицы:

    Таблица 14.1.Содержание системного каталога по стандарту SQL2

    Системная таблица

    Содержание

    USERS -

    Одна строка для каждого идентификатора пользователя с зашифрованным паролем

    SCHEMA

    Одна строка для каждой информационной схемы

    DATA_TYPE_DESCRIPTION

    Одна строка для каждого домена или столбца, имеющего определенный тип данных

    DOMAINS

    Одна строка для каждого домена

    DOMAIN_CONSTRA1NS

    Одна строка для каждого ограничивающего условия, наложенного на домен

    TABLES

    Одна строка для каждой таблицы с указанием имени, владельца, количества столбцов, размеров данных столбцов, и т. д.

    VIEWS

    Одна строка для каждого представления с указанием имени, имени владельца, запроса, который определяет представление и т. д.

    COLUMNS

    Одна строка для каждого столбца с указанием имени столбца, имени таблицы или представления, к которому он относится, типа данных столбца, его размера, допустимости или недопустимости неопределенных значений (NULL ) и т. д.

    VIEW_TABLE_USAGE

    Одна строка для каждой таблицы, на которую имеется ссылка в каком-либо представлении (если представление многотабличное, то для каждой таблицы заносится одна строка)

    VIEW_COLUMN_USAGE

    Одна строка для каждого столбца, на который имеется ссылка в некотором представлении

    TABLE_CONSTRAINS

    Одна строка для каждого условия ограничения, заданного в каком-либо определении таблицы

    KEY_COLUMN_USAGE

    Одна строка для каждого столбца, на который наложено условие уникальности и который присутствует в определении первичного или внешнего ключа (если первичный или внешний ключ заданы несколькими столбцами, то для каждого из них задается отдельная строка)

    REFERENTIAL_CONSTRAINTS

    Одна строка для каждого внешнего ключа, присутствующего в определении таблицы

    CHECK_ CONSTRAINTS

    Одна строка для каждого условия проверки, заданного в определении таблицы

    CHECK_TABLE_USAGE

    Одна строка для каждой таблицы, на которую имеется ссылка в условиях проверки, ограничительном условии для домена или всей таблицы

    CHECK_COLUMN_USAGE

    Одна строка для каждого столбца, на который имеется ссылка в условии проверки, ограничительном условии для домена или ином ограничительном условии

    ASSERTIONS

    Одна строка для каждого декларативного утверждения целостности

    TABLE_PRIVILEGES

    Одна строка для каждой привилегии, предоставленной на какую-либо таблицу

    COLUMN_PRIVILEGES

    Одна строка для каждой привилегии, предоставленной на какой-либо столбец

    USAGE_PRIVILEGES

    Одна строка для каждой привилегии, предоставленной на какой-либо домен, набор символов и т. д.

    CHARACTER_SETS

    Одна строка для каждого заданного набора символов

    COLLATIONS

    Одна строка для заданной последовательности

    TRANSLATIONS

    Одна строка для каждого заданного преобразования

    SQL_LAGUAGES

    Одна строка для каждого заданного языка, поддерживаемого СУБД

     

    Стандарт SQL2 не требует, чтобы СУБД в точности поддерживала требуемый набор системных таблиц. Стандарт ограничивается требованием того, чтобы для рядовых пользователей были доступны некоторые специальные представления системного каталога. Поэтому системные таблицы организованы по-разному в разных СУБД и имеют различные имена, но большинство СУБД предо-ставля-ют ряд основных представлений рядовым пользователям.

    Кроме того, системный каталог отражает некоторые дополнительные возможности, предоставляемые конкретными СУБД. Так, например, в системном каталоге Oracle присутствуют таблицы синонимов.

    Область SQL содержит данные связывания, временные буферы, дерево разбора и план выполнения для каждого оператора SQL, переданного серверу БД. Область разделяемого пула ограничена в размере, поэтому, возможно, в ней не могут поместиться все операторы SQL, которые были выполнены с момента запуска сервера БД. Ядро СУБД удаляет старые, давно не используемые операторы, освобождая память под новые операторы SQL. Если пользователь выполняет запрос, план выполнения которого уже хранится в разделяемом пуле, то СУБД не производит его разбор и построение нового плана, она сразу запускает его на выполнение, возможно, с новыми параметрами.

    Модуль управления транзакциями поддерживает механизмы фиксации и отката транзакций, он связан с модулем управления буферами оперативной памяти и обеспечивает сохранение всей информации, которая требуется после мягких или жестких сбоев в системе. Кроме того, модуль управления транзакциями содержит специальный механизм поиска тупиковых ситуаций или взаимоблокировок и реализует одну из принятых стратегий принудительного завершения транзакций для развязывания тупиковых ситуаций.

    Особое внимание надо обратить на модуль поддержки SQL. Это практически транслятор с языка SQL и блок оптимизации запросов.

    В общем, оптимизация запросов может быть разделена на синтаксическую и семантическую.

    Методы синтаксической оптимизации запросов связаны с построением некоторой эквивалентной формы, называемой иногда канонической формой, которая требует меньших затрат на выполнение запроса, но дает результат, полностью эквивалентный исходному запросу.

    К методам, используемым при синтаксической оптимизации запросов, относятся следующие.

    Логические преобразования запросов. Прежде всего это относится к преобразованию предикатов, входящих в условие выборки. Предикаты, содержащие операции сравнения простых значений. Такой предикат имеет вид арифметическое выражение ОС арифметическое выражение, где ОС — операция сравнения, а арифметические выражения левой и правой частей в общем случае содержат имена полей отношений и константы (в языке SQL среди констант могут встречаться и имена переменных объемлющей программы, значения которых становятся известными только'при реальном выполнении запроса).

    Канонические представления могут быть различными для предикатов разных типов. Если предикат включает только одно имя поля, то его каноническое представление может, например, иметь вид имя поля ОС константное арифметическое выражение (эта форма предиката — простой предикат селекции — очень полезна при выполнении следующего этапа оптимизации). Если начальное представление предиката имеет вид (n+12)*R.B OC 100 здесь n — переменная языка, R.B — имя столбца В отношения R, ОС - допустимая операция сравнения.

    Каноническим представлением такого предиката может быть

    R.В ОС 100/(n+12)

    В этом случае мы один раз для заданного значения переменной п вычисляем выражение в скобках и правую часть операции сравнения 100/(n +12), а потом каждую строку можем сравнивать с полученным значением.

    Если предикат включает в точности два имени поля разных отношений (или двух разных вхождений одного отношения), то его каноническое представление может иметь вид имя поля ОС арифметическое выражение, где арифметическое выражение в правой части включает только константы и второе имя ноля (это тоже форма, полезная дпя выполнения следующего шага оптимизации,

    предикат соединения; особенно важен случай эквисоединения, когда ОС — это равенство).

    Если в начальном представлении предикат имеет вид:

    12*(Rl.A)-n*(R2.B) ОС m,

    то его каноническое представление:

    R1.A ОС (m+n*(R2.B)/12

    В общем случае желательно приведение предиката к каноническому представлению вида арифметическое выражение ОС константное арифметическое выражение, где выражения правой и левой частей также приведены к каноническому представлению. В дальнейшем можно произвести поиск общих арифметических выражений в разных предикатах запроса. Это оправдано, поскольку при выполнении запроса вычисление арифметических выражений будет производиться при выборке каждого очередного кортежа, то есть потенциально большое число раз.

    При приведении предикатов к каноническому представлению можно вычислять константные выражения и избавляться от логических отрицаний.Еще один класс логических преобразований связан с приведением к каноническому виду логического выражения, задающего условие выборки запроса. Как правило, используются либо дизъюнктивная, либо конъюнктивная нормальные формы. Выбор канонической формы зависит от общей организации оптимизатора.

    При приведении логического условия к каноническому представлению можно производить поиск общих предикатов (они могут существовать изначально, могут появиться после приведения предикатов к каноническому виду или в процессе нормализации логического условия) и упрощать логическое выражение за счет, например, выявления конъюнкции взаимно противоречащих предикатов.

    Преобразования запросов с изменением порядка реляционных операций.В традиционных оптимизаторах распространены логические преобразования, связанные с изменением порядка выполнения реляционных операций.

    Например, имеем следующий запрос:

    R1 NATURAL JOIN R2

    WHERE R1.A ОС a AND R2.B С b

    Здесь а и b некоторые константы, которые ограничивают значение атрибутов отношений R1 и R2.

    Если мы его рассмотрим в терминах реляционной алгебры, то это естественное соединение отношений R1 и R2, в которых заданы внутренние ограничения на кортежи каждого отношения.

    Для уменьшения числа соединяемых кортежей резоннее сначала произвести операции выборки на каждом отношении и только после этого перейти в операции естественного соединения. Предикат соединения; особенно важен случай зквисоединения, когда ОС – это равенство). Если в начальном представлении предикат имеет вид:

    12*(Rl.A)-n*(R2.B) ОС m,

    то его каноническое представление:

    R1.A ОС (m+n*(R2.B)/12 

    В общем случае желательно приведение предиката к каноническому представлению вида арифметическое выражение ОС константное арифметическое выражение, где выражения правой и левой частей также приведены к каноническому представлению. В дальнейшем можно произвести поиск общих арифметических выражений в разных предикатах запроса. Это оправдано, поскольку при выполнении запроса вычисление арифметических выражений будет производиться при выборке каждого очередного кортежа, то есть потенциально большое число раз.

    При приведении предикатов к каноническому представлению можно вычислять константные выражения и избавляться от логических отрицаний.

    Еще один класс логических преобразовании связан с приведением к каноническому виду логического выражения, задающего условие выборки запроса. Как правило, используются либо дизъюнктивная, либо конъюнктивная нормальные формы. Выбор канонической формы зависит от общей организации оптимизатора.

    При приведении логического условия к каноническому представлению можно производить поиск общих предикатов (они могут существовать изначально, могут появиться после приведения предикатов к каноническому виду или в процессе нормализации логического условия) и упрощать логическое выражение за счет, например, выявления конъюнкции взаимно противоречащих предикатов.

    Преобразования запросов с изменением порядка реляционных операций.В традиционных оптимизаторах распространены логические преобразования, связанные с изменением порядка выполнения реляционных операций.

    Например, имеем следующий запрос:

    Rl NATURAL JOIN R2 WHERE R1.A ОС a AND R2.B С b

    Здесь а и b некоторые константы, которые ограничивают значение атрибутов отношений R1 и R2.

    Если мы его рассмотрим в терминах реляционной алгебры, то это стественное соединение отношений R1 и R2, в которых заданы внутренние ограничения на кортежи каждого отношения.

    Для уменьшения числа соединяемых кортежей резоннее сначала произвести операции выборки на каждом отношении и только после этого перейти в операции естественного соединения.

    Поэтому данный запрос будет эквивалентен следующей последовательности операций реляционной алгебры:

    R3 =.R1[R1.A ОС а] R4 = R2[R2.B С b] R5 = R3*[ ]*R4

    Хотя немногие реляционные системы имеют языки запросов, основанные в чистом виде на реляционной алгебре, правила преобразований алгебраических выражений могут быть полезны и в других случаях. Довольно часто реляционная алгебра используется в качестве основы внутреннего представления запроса. Естественно, что после этого можно выполнять и алгебраические преобразования.

    В частности, существуют подходы, связанные с преобразованием запросов на языке SQL к алгебраической форме. Особенно важно то, что реляционная алгебра более проста, чем язык SQL. Преобразование запроса к алгебраической форме упрощает дальнейшие действия оптимизатора по выборке оптимальных планов. Вообще говоря, развитый оптимизатор запросов системы, ориентированной на SQL, должен выявить все возможные планы выполнения любого запроса, но «пространство поиска» этих планов в общем случае очень велико; в каждом конкретном оптимизаторе используются свои эвристики для сокращения пространства поиска. Некоторые, возможно, наиболее оптимальные планы никогда не будут рассматриваться. Разумное преобразование запроса на SQL к алгебраическому представлению сокращает пространство поиска планов выполнения запроса с гарантией того, что оптимальные планы потеряны не будут.

    Приведение запросов с вложенными подзапросами к запросам с соединениями.Основным отличием языка SQL от языка реляционной алгебры является возможность использовать в логическом условии выборки предикаты, содержащие вложенные подзапросы. Глубина вложенности не ограничивается языком, то есть, вообще говоря, может быть произвольной. Предикаты с вложенными подзапросами при наличии общего синтаксиса могут обладать весьма различной семантикой. Единственным общим для всех возможных семантик вложенных подзапросов алгоритмом выполнения запроса является вычисление вложенного подзапроса всякий раз при вычислении значения предиката. Поэтому естественно стремиться к такому преобразованию запроса, содержащего предикаты со вложенными подзапросами, которое сделает семантику подзапроса более явной, предоставив тем самым в дальнейшем оптимизатору возможность выбрать способ выполнения запроса, наиболее точно соответствующий семантике подзапроса.

    Каноническим представлением запроса на п отношениях называется запрос, содержащий n-1 предикат соединения и не содержащий предикатов с вложенными подзапросами. Фактически каноническая форма — это алгебраическое представление запроса.

    Например, запрос с вложенным подзапросом:

    (SELECT Rl.A FROM Rl

    WHERE Rl.B IN

    (SELECT R2.B FROM R2 WHERE Rl.C = R2.D))

    эквивалентен

    SELECT Rl.A FROM Rl. R2

    WHERE Rl.A = R2.B AND Rl.C = R2.D

    Второйзапрос:

    (SELECT Rl.A FROM Rl WHERE Rl.K =

    (SELECT AVG (R2.B) FROM R2 WHERE Rl.C = R2.D)

    или

    (SELECT Rl.A FROM Rl. R3

    WHERE Rl.C = R3.D AND Rl.K = R3.L)

    R3 = SELECT R2.D, L AVG (R2.B)

    FROM R2

    GROUP BY R2.D

    При использовании подобного подхода в оптимизаторе запросов не обязательно производить формальные преобразования запросов. Оптимизатор должен в большей степени использовать семантику обрабатываемого запроса, а каким образом она будет распознаваться — это вопрос техники.

    Семантические методы оптимизации основаны как раз на учете семантики конкретной БД. Таких методов в различных реализациях может быть множество, мы с вами коснемся лишь некоторых из них.

    Преобразование запросов с учетом семантической информации.Это прежде всего относится к запросам, которые выполняются над представлениями. Само представление представляет собой запрос. В БД представление хранится в виде скомпилированного плана выполнения запроса, то есть в нем в некоторой канонической форме представлены уже все предикаты и сам план выполнения запроса. При преобразовании внешнего запроса производится объединение внешнего запроса с внутренней формой запроса, составляющего основу представления, и строится обобщенная каноническая форма, объединяющая оба запроса. Для этой попой формы проводится анализ и преобразование предикатов. Поэтому при выполнении запроса над представлением будет выполнено не два, а только один запрос, оптимизированный по обобщенным параметрам запроса.

    Использование ограничений целостности при анализе запросов.Ограничения целостности связаны с условиями, которые накладываются на значения столбцов таблицы. При выполнении запросов над таблицами условия запросов объединяются специальным образом с условиями ограничений таблицы и полученные обобщенные предикаты уже анализируются. Допустим, что мы ищем в нашей библиотеке читателей с возрастом более 100 лет, но если у нас есть ограничение, заданное для таблицы READERS, которое ограничивает дату рождения наших читателей, так чтобы читатель имел дату рождения в пределах от 17 до 100 лет включительно. Поэтому оптимизатор запроса, сопоставив два эти предиката, может сразу определить, что результатом запроса будет пустое множество.

    После оптимизации запрос имеет непроцедурный вид, то есть в нем не определен жесткий порядок выполнения элементарных операций над исходными объектами. На следующем этане строятся все возможные планы выполнения запросов и для каждого из них производятся стоимостные оценки. Оценка планов выполнения запроса основана на анализе текущих объемов данных, хранящихся в отношениях БД, и на статистическом анализе хранимой информации. В большинстве СУБД ведется учет диапазона значений отдельного столбца с указанием процентного содержания для каждого диапазона. Поэтому при построении плана запроса СУБД может оценить объем промежуточных отношений и построить план таким образом, чтобы на наиболее ранних этапах выполнения запроса минимизировать количество строк, включаемых в промежуточные отношения.

    Кроме ядра СУБД каждый поставщик обеспечивает специальные инструментальные средства, облегчающие администрирование БД и разработку новых проектов БД и пользовательских приложений для данного сервера. В последнее время практически все утилиты и инструментальные средства имеют развитый графический интерфейс.
    1   ...   12   13   14   15   16   17   18   19   20


    написать администратору сайта