Документ Microsoft Office Word. Уральский государственный горный университет
Скачать 0.79 Mb.
|
Выбор уставок реле максимального токаи плавких вставок предохранителей. Ток уставки определяется по формулам: а) Iу = 1,2 (Iпд + Iн.д.), А - для защиты магистрали; б) Iу = 1,2Iп.д, А – для защиты отдельного электроприемника, где Iп.д – пусковой ток наибольшего по мощности двигателя лебедки 55ЛС-2С, Iп.д = 600А; Iн.д – сумма номинальных токов остальных двигателей магистрали, Iн.д = 550А; а) Iу = 1,2 (600 + 550) = 1380 А – для защиты магистральной сети принимаем автоматический выключатель АФВ-3 с уставкой тока Iу=1500 А; б) Iу(55ЛС) = 1,2 600 = 720 А – для защиты отдельного приемника (55ЛС-2с) принимаем магнитный пускатель ПВИ с уставкой тока Iу = 750 А; Iу(30ЛС) = 1,2 350 = 420 А – для защиты отдельного приемника (30ЛС-2с) принимаем магнитный пускатель ПВИ с уставкой тока Iу = 500 А; Расчет токов короткого замыканияв кабельной сети. Расчет токов короткого замыкания в кабельной сети участка производится методом приведенной длины кабеля. Расчет производится для одного блока:
Приведенная длина кабеля Lпр = Кпр Lф, м; (10.33) где Кпр – коэффициент приведения различных сечений кабелей к сечению рабочей жилы 50 мм2; Lф – фактическая длина кабеля, м Lпр = 0,47 400 = 188 м, тогда = 3020 А > 1,5 – условию удовлетворяет.
Кпр1Lф1 + Кпр2Lф2 = 0,47400 + 1,02150 = 341 м, (10.34) тогда = 1360 А > 1,5 – условию удовлетворяет.
Lпр = 265 м; = 1580 А > 1,5 – условию удовлетворяет. Расчет для второго блока:
Lф = 200 м; Lпр = 94 м, тогда = 3660 А > 1,5
Lпр = Кпр1Lф1 + Кпр2Lф2 = 0,47200 + 1,02150 = 247 м, (10.35) тогда = 1730 А > 1,5 - Для кабеля ГРШЭ-3х35+1х10 потребителя 55ЛС-2с Lпр = 193 м; тогда = 1960 А > 1,5 Для остальных блоков принимается аналогичное оборудование. 10.7 Энергетические показатели шахтыРасчетный максимум активной нагрузки Рзм = Ксм Рн, кВт, (10.36) где Ксм – коэффициент совмещения максимума активных нагрузок всех технологических потребителей тока, Ксм=0,9; Рн – суммарный максимум активной нагрузки в целом по шахте; Для расчета Рн составляется таблица шахтных нагрузок. Таблица 10.4
Рзм = 0,9 13706 = 12336 кВт Общий расход активной энергииWг = Рзм Тг (10.38) Wг = 12336 4000 = 49,34 106 кВтч Удельный расход активной энергии= , (10.39) где Аг – выпуск продукции за рассматриваемый период, т. = = 30,8 кВтч/т. Электровооруженность труда кВтчас/чел (10.40) где tс – число часов работы в сутки; mсп – списочный состав трудящихся КВтчас/чел10.8 Техника безопасностиДля обеспечения безопасной работы персонала необходимо:
Противопожарные мероприятия Причины пожаров, связанные с электрическим током, следующие:
Для исключения возникновения пожаров от электрического тока необходимо точно выполнять правила по монтажу и эксплуатации рудничных электроустановок, которые изложены в специальных инструкциях. 11. Камерно-столбовая система 11.1 Камерно-столбовая система разработки (КССР) с ленточными междукамерными целиками Суть предлагаемого варианта КССР заключается в следующем. Отработка ведется с оставлением ленточных междукамерных целиков по простиранию минимально возможной ширины – порядка 3,0 м. Ширина камер выбирается из расчета минимального пролета отработки – 5060 м и составляет 6 м. Так как ленточные целики не разрезаются камерами по восстанию (кроме создания диагональных просечек для проветривания), то отпадает необходимость в этом плече скреперования. Транспортировка руды осуществляется только по выемочной камере и далее по восстающему до рудоспуска. Рабочее пространство камеры при выемке ограничено: по восстанию – последним ленточным целиком, по падению массивом. По сравнению с применяемыми на СУБРе вариантами со столбчатыми целиками, такой ленточный целик более равномерно нагружен, обладает большей устойчивостью в качестве обеспечения сохранности выемочной камеры. Исходя из этого, рабочая камера большего, чем принято пролёта так же будет сохранять устойчивость на период ее выемки. Тем более, что упрощенная схема скреперования позволяет ускорить выемку камеры. Минимальная ширина междукамерных ленточных целиков составляет – 34 м, столбчатых целиков – 35м. При небольших пролетах отработки устойчивость ленточных целиков на 30 % выше столбчатых. По этому предлагается использовать ленточные целики. Кроме того, данный вариант КССР предполагает вместо барьерного целика оставлять регулярные (через 5060 м) комбинированный барьерный целик либо производить взрывания вееров скважин в кровле отработанной залежи над ленточными целиками. Обоснования к применению предлагаемых целиков в замен барьерных приведены ниже. В "Руководстве по выбору конструктивных параметров КССР с глубиной 1000 м и более" параметры столбчатых и ленточных целиков определяются в зависимости от пролета выработанного пространства между опорами. Для снижения потерь в барьерных целиках величина этого пролета выбиралась исходя из расстояния между безрудиями. Практически эти пролеты могут составлять 200300 м. При этом, исходя из расчетов, междукамерные целики с увеличением пролета могут принимать удароопасный коэффициент формы, то есть их наименьший размер в плане достигает или превышает высоту целика. Согласно "Руководства по выбору конструктивных параметров КССР с глубиной 1000 м и более" нагрузки на целики рассчитываются с учетом их остаточного деформирования, когда вертикальные напряжения, действующие в целиках, составляют z ост = 0,176 сж. Но, при коэффициенте формы Кф>1, когда ширина превышает высоту, целик является несущим, работающим в упругом режиме. Для таких целиков расчет параметров должен исходить не из остаточной прочности целиков и величин напряжений в них. В действительности эти целики находятся в предельно напряженном состоянии и не редко разрушаются в форме горных ударов. Возникающие удароопасные условия сдерживают развитие горных работ, требуют дополнительного применения противоударных мер. Поэтому, чтобы исключить возникновение удароопасных условий необходимо переходить на регулярное оставление опор. Предельный пролет между опорами, как показали исследования Уральского филиала «ВНИМИ» в отчете НИР «Оценка удароопасности отдельных участков шахтных полей», должен составлять 5060 метров. Однако, при применении регулярно оставляемых барьерных целиков, возникают дополнительные затраты, связанные с подготовкой и проведением выпуска барьерного целика. Кроме того, зачастую приходится оставлять запасы в барьерных целиках. Использовать в качестве барьерного целика безрудие с соблюдением предельного пролета в 50-60 м удаётся редко. Для того, что бы избежать затрат на подготовку и выпуск барьерного целика как этого требует проект предлагается вариант с применением комбинированного барьерный целика. Для его образования в месте создания барьерного целика проходят камеру шириной 3,0-3,5 метра и в ее боках (ленточных целиках) пробуривают веера скважин по всей ширине камеры отбивая в камеру слой толщиной в 1 м. Кроме того, концы вееров обрывают породы висячего бока над камерой на глубину обеспечивающую заполнение камеры породой совместно с отрываемой от боковых стенок рудой для создания барьерного целика. Рассчитывая, что взрыванием создается крупность, обеспечивающая коэффициент разрыхления Кр=1,5 необходимая глубина обрушения кровли для различной мощности и ширины камеры приведена в табл. 11.1. В этом случае будет обеспечено полное подбучивание пород кровли и созданный барьерный целик обеспечит разделение нагрузок пролета отработки по восстанию от пролета по падению. Такой барьерный целик является не только опорой. Разрушение от взрывания вееров скважин в висячем боку способствует слому плиты кровли, что так же важно для снижения нагрузок в рабочих камерах расположенных ниже по падению. Другим вариантом обеспечения снижения нагрузок при превышении предельного пролета отработки является способ разрушения связи кровли с опорой в качестве ленточного целика посредствам бурения и взрывания вееров скважин над ближним по восстанию ленточным целиком. Таблица 11.1 Глубина обрушения кровли, для забутовки камеры
|